




# **Bus Connects Route 6 Lucan to City Centre – Ground Investigation**

Client: National Transport Authority (NTA)

Client's Representative: AECOM/Mott MacDonald

Report No.: 20-0399B

Date: December 2020

Status: Final for Issue





#### **CONTENTS**

### **Document Control Sheet**

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

| 1 | AUT  | HORITY                                                                      | 5  |
|---|------|-----------------------------------------------------------------------------|----|
| 2 | SCOI | PE                                                                          | 5  |
| 3 | DESC | CRIPTION OF SITE                                                            | 5  |
| 4 | SITE | OPERATIONS                                                                  | 6  |
|   | 4.1  | Summary of site works                                                       |    |
|   | 4.2  | Boreholes                                                                   | 6  |
|   |      | 4.2.1 Light cable percussion boreholes                                      | ε  |
|   |      | 4.2.2 Boreholes by combined percussion boring and rotary follow-on drilling | 7  |
|   |      | 4.2.3 Dynamic sampled boreholes                                             | 8  |
|   | 4.3  | Dynamic probes                                                              |    |
|   | 4.4  | Standpipe installations                                                     | 8  |
|   | 4.5  | Slit trenches                                                               | 9  |
|   | 4.6  | Surveying                                                                   | 9  |
|   | 4.7  | Groundwater monitoring                                                      | 9  |
| 5 | LAB  | ORATORY WORK                                                                | g  |
|   | 5.1  | Geotechnical laboratory testing of soils                                    |    |
|   | 5.2  | Geotechnical laboratory testing of rock                                     | 10 |
|   | 5.3  | Environmental laboratory testing of soils                                   | 10 |
| 6 | GRO  | UND CONDITIONS                                                              | 11 |
|   | 6.1  | General geology of the area                                                 | 11 |
|   | 6.2  | Ground types encountered during investigation of the site                   | 11 |
|   | 6.3  | Groundwater                                                                 | 11 |
| 7 | REFI | FRENCES                                                                     | 12 |





#### **APPENDICES**

Appendix A Site and exploratory hole location plans

Appendix B Borehole logs

Appendix C Core photographs

Appendix D Slit trench logs and sketches

Appendix E Slit trench photographs

Appendix F Geotechnical laboratory test results
Appendix G Environmental laboratory test results

Appendix H SPT hammer energy measurement report





### **Document Control Sheet**

| Report No.:                 |           | Status: Final for Issue Issue Date: 16th December 2020  Reviewed by: Approved by:  Scan Ross. Om A Mag. |                                       |                                              |                                   |  |  |  |  |  |  |  |  |
|-----------------------------|-----------|---------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------|-----------------------------------|--|--|--|--|--|--|--|--|
| Project Title:              |           | Bus Connects Ro                                                                                         | Connects Route 6 Lucan to City Centre |                                              |                                   |  |  |  |  |  |  |  |  |
| Client:                     |           | National Transp                                                                                         | ort Authority (N                      | Issue Issue Date: 16th Decem                 |                                   |  |  |  |  |  |  |  |  |
| Client's Repres             | entative: | AECOM/Mott MacDonald                                                                                    |                                       |                                              |                                   |  |  |  |  |  |  |  |  |
| Revision:                   | A01       | Status:                                                                                                 | Final for Issue                       | Issue Date:                                  | 16 <sup>th</sup> December<br>2020 |  |  |  |  |  |  |  |  |
| Prepared by:                |           | Reviewed by:                                                                                            |                                       | Approved by:                                 | 2020<br>UMO-7.                    |  |  |  |  |  |  |  |  |
| HAL                         |           | hia                                                                                                     | Ross.                                 | Jam O 1                                      | luoj.                             |  |  |  |  |  |  |  |  |
| Stuart Abraham<br>MEng MIEI |           | Sean Ross<br>BSc MSc MIEI                                                                               |                                       | Darren O'Mahony<br>BSc MSc MIEI EurGeol PGeo |                                   |  |  |  |  |  |  |  |  |

The works were conducted in accordance with:

British Standards Institute (2015) BS 5930:2015, Code of practice for site investigations.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

Laboratory testing was conducted in accordance with:

British Standards Institute BS 1377:1990 parts 2, 4, 5, 7 and 9





### METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in BS5930:2015, The Code of Practice for Site Investigation.

| Abbreviations use            | ed on exploratory hole logs                                                                                                                                                                                                                                 |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U                            | Nominal 100mm diameter undisturbed open tube sample (thick walled sampler).                                                                                                                                                                                 |
| UT                           | Nominal 100mm diameter undisturbed open tube sample (thin walled sampler).                                                                                                                                                                                  |
| P                            | Nominal 100mm diameter undisturbed piston sample.                                                                                                                                                                                                           |
| В                            | Bulk disturbed sample.                                                                                                                                                                                                                                      |
| LB                           | Large bulk disturbed sample.                                                                                                                                                                                                                                |
| D                            | Small disturbed sample.                                                                                                                                                                                                                                     |
| С                            | Core sub-sample (displayed in the Field Records column on the logs).                                                                                                                                                                                        |
| L                            | Liner sample from dynamic sampled borehole.                                                                                                                                                                                                                 |
| W                            | Water sample.                                                                                                                                                                                                                                               |
| ES / EW                      | Soil sample for environmental testing / Water sample for environmental testing.                                                                                                                                                                             |
| SPT (s)                      | Standard penetration test using a split spoon sampler (small disturbed sample obtained).                                                                                                                                                                    |
| SPT (c)                      | Standard penetration test using 60 degree solid cone.                                                                                                                                                                                                       |
| (x,x/x,x,x,x)                | Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length.                                                                      |
| (Y for Z/Y for Z)            | Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given seating or test length 'Z' (mm).                                                                                    |
| N=X                          | SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm).                                                                                                                                                  |
| HVP / HVR                    | In situ hand vane test result (HVP) and vane test residual result (HVR). Results presented in kPa.                                                                                                                                                          |
| V<br>VR                      | Shear vane test (borehole). Shear strength stated in kPa. V: undisturbed vane shear strength VR: remoulded vane shear strength                                                                                                                              |
| Soil consistency description | In cohesive soils, where samples are disturbed and there are no suitable laboratory tests, N values may be used to indicate consistency on borehole logs – a median relationship of Nx5=Cu is used (as set out in Stroud & Butler 1975).                    |
| dd-mm-yyyy                   | Date at the end and start of shifts, shown at the relevant borehole depth. Corresponding casing and water depths shown in the adjacent columns.                                                                                                             |
| $\overline{}$                | Water strike: initial depth of strike.                                                                                                                                                                                                                      |
| <b>T</b>                     | Water strike: depth water rose to.                                                                                                                                                                                                                          |
| Abbreviations relatin        | g to rock core – reference Clause 36.4.4 of BS 5930: 2015                                                                                                                                                                                                   |
| TCR (%)                      | Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.                                                                                                                                         |
| SCR (%)                      | Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures. |
| RQD (%)                      | Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.                                                                                                                                    |
| FI                           | Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.                                                                                                                            |
| NI                           | Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.                                                                                                                                     |
| AZCL                         | Assessed zone of core loss: The estimated depth range where core was not recovered.                                                                                                                                                                         |
| DIF                          | Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.                                                                                                                                                            |
| (xxx/xxx/xxx)                | Spacing between discontinuities (minimum/average/maximum) measured in millimetres.                                                                                                                                                                          |





## **Bus Connects Route 6 Lucan to City Centre**

#### 1 **AUTHORITY**

On the instructions of AECOM/Mott MacDonald, ("the Client's Representative"), acting on the behalf of National Transport Authority (NTA) ("the Client"), a ground investigation was undertaken at the above location to provide geotechnical and environmental information to inform the planning stage design and enable the design of Bus Connects Core Bus Corridors.

This report details the work carried out both on site and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the site investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. No responsibility can be taken for conditions not encountered through the scope of work commissioned, for example between exploratory hole points, or beneath the termination depths achieved.

This report was prepared by Causeway Geotech Ltd for the use of the Client and the Client's Representative in response to a particular set of instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

#### 2 SCOPE

The extent of the investigation, as instructed by the Client's Representative, included boreholes, slit trenches, soil and rock core sampling, environmental sampling, groundwater monitoring, in-situ and laboratory testing, and the preparation of a factual report on the findings.

#### 3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, the works were conducted on and alongside the N4 road from Junction 2 in the west to Ballyfermot Training Centre adjacent to the R148 (Chapilizod Bypass) in the east. The main land use in the area is residential and light commercial with Liffey Valley Shopping Centre located in the centre of the site. Large residential developments are found east through west.



#### SITE OPERATIONS

#### Summary of site works 4.1

Site operations, which were conducted between 24th September and 24th October 2020, comprised:

- six light cable percussion boreholes
- one borehole by combined percussion boring and rotary follow-on drilling
- six boreholes by dynamic (windowless) sampling methods
- a standpipe installation in one borehole
- one slit trench

The exploratory holes and in-situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

#### 4.2 **Boreholes**

A total of thirteen boreholes were put down in a minimum diameter of 150mm through soils and rock strata to their completion depths by a combination of methods, including light percussion boring using Dando Terrier rigs, light cable percussion boring by Dando 2000 rigs, and rotary drilling (by Hanjin D8 rotary drilling rigs).

The borehole logs state the methodology and plant used for each location, as well as the appropriate depth ranges.

A summary of the boreholes, subdivided by category in accordance with the methods employed for their completion, is presented in the following sub-sections.

#### 4.2.1 Light cable percussion boreholes

Six boreholes (R6-CP01, R6-CP03 and R6-CP08 - R6-CP11) were put down to completion in minimum 200mm diameter using Dando 2000 light cable percussion boring rigs. All boreholes were terminated on encountering virtual refusal on obstructions.

Hand dug inspection pits were carried out between ground level and 1.20m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Disturbed (bulk and small bag) samples were taken within the encountered strata. Undisturbed (U100) samples were taken where appropriate and as directed within fine soils. Environmental samples were





taken at standard intervals, as directed by the Client's Representative.

Standard penetration tests were carried out in accordance with BS EN 22476-3:2005+A1:2011 at standard depth intervals using the split spoon sampler ( $SPT_{(s)}$ ) or solid cone attachment ( $SPT_{(c)}$ ). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections. The SPT hammer energy measurement report is provided in Appendix H.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Appendix B presents the borehole logs.

#### 4.2.2 Boreholes by combined percussion boring and rotary follow-on drilling

One borehole (R6-CP07) was put down by a combination of light percussion boring and rotary follow-on drilling techniques with core recovery in bedrock. Where the light percussion borehole had not been advanced onto bedrock, rotary percussive methods were employed to advance the borehole to completion/bedrock. Symmetrix cased full-hole drilling was used, with SPTs carried out at standard intervals as required.

Hand dug inspection pits were carried out between ground level and 1.20m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Standard penetration tests were carried out in accordance with BS EN 22476-3:2005+A1:2011 at standard depth intervals throughout the overburden using the split spoon sampler ( $SPT_{(s)}$ ) or solid cone attachment ( $SPT_{(c)}$ ). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections. The SPT hammer energy measurement report is provided in Appendix H.

Where coring was carried out within bedrock strata, Geobor S Coring was used. The core was extracted in up to 1.5m lengths using a SK6L core barrel, which produced core of nominal 102mm diameter, and was placed in single channel wooden core boxes.

The core was subsequently photographed and examined by a qualified and experienced Engineering Geologist, thus enabling the production of an engineering log in accordance with *BS 5930: 2015: Code of practice for ground investigations*.

Appendix B presents the borehole logs, with core photographs presented in Appendix C.





#### 4.2.3 Dynamic sampled boreholes

Six boreholes (R6-CP02, R6-CP04 – R6-CP06, R6-WS01 & R6-WS02) were put down to completion by light percussion boring techniques using a Dando Terrier dynamic sampling rig. The boreholes were put down initially in 150mm diameter, reducing in diameter with depth as required, down to 50mm by use of the smallest sampler.

Hand dug inspection pits were carried out between ground level and 1.20m depth to ensure boreholes were put down clear of services or subsurface obstructions. The boreholes were taken to depths ranging between 0.87m and 3.60m where they were terminated on encountering virtual refusal on obstructions.

Standard penetration tests were carried out in accordance with BS EN 22476-3:2005+A1:2011 at standard depth intervals using the split spoon sampler ( $SPT_{(s)}$ ) or solid cone attachment ( $SPT_{(c)}$ ). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections. The SPT hammer energy measurement report is provided in Appendix H.

Disturbed (bulk and small bag) samples were taken within the encountered strata. Environmental samples were taken at standard intervals, as directed by the Client's Representative. Undisturbed (U100) samples were taken as appropriate within fine grained strata.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded. Details of the water strikes are presented on the individual borehole logs.

Appendix B presents the borehole logs.

#### 4.3 Dynamic probes

Two dynamic probes (R6-CP02DP and R6-CP07DP) were conducted as a follow on from the boreholes using the DPSHB method as described in BS EN ISO 22476-3:2005+A1:2011. The method entails a 63.5kg hammer falling 0.75m onto a 50.5mm diameter cone with an apex angle of 90°.

Appendix B provides the dynamic probe logs on the sheet following the relevant borehole log in the form of plots, against depth, of the number of blows per 100mm penetration.

#### 4.4 Standpipe installations

A groundwater monitoring standpipe was installed in boreholes R6-CP07

Details of the installations, including the depth range of the response zone, are provided in Appendix B on the individual borehole logs.



#### 4.5 Slit trenches

One slit trench (R6-TP01) was excavated by a combination of hand digging and mechanical excavation using a compact 3t tracked excavator fitted with a 600mm wide toothless bucket, to locate and identify buried services at the site. An attempt was also made to investigate foundations of existing bridge abutments at this location. A concrete projection was identified at 1.10mbgl however it was not possible to establish or confirm foundation makeup.

Drawing of the trenches and the locations of services encountered during excavation are shown along with the slit trench logs in Appendix D, with photographs presented in Appendix E.

#### 4.6 Surveying

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from Causeway Geotech. Surveying was carried out using a Trimble R6 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish Transverse Mercator) and ground elevation (mOD Malin) at each location are recorded on the individual exploratory hole logs. The exploratory hole plan presented in Appendix A shows these as-built positions.

#### 4.7 Groundwater monitoring

Following completion of site works, a round of groundwater monitoring was carried out. Ground water monitoring was carried out using a water interface probe.

#### 5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described and their descriptions incorporated into the borehole logs.

#### 5.1 Geotechnical laboratory testing of soils

Laboratory testing of soils comprised:

- **soil classification:** moisture content measurement, Atterberg Limit tests and particle size distribution analysis.
- **shear strength** (total stress): unconsolidated undrained triaxial tests
- soil chemistry: pH and water soluble sulphate content

Laboratory testing of soils samples was carried out in accordance with British Standards Institute: *BS 1377, Methods of test for soils for civil engineering purposes; Part 1 (2016), and Parts 2-9 (1990).* 

The test results are presented in Appendix F.

### 5.2 Geotechnical laboratory testing of rock

Laboratory testing of rock sub-samples comprised:

- point load index
- unconfined compressive strength (UCS) tests

| Test             | Test carried out in accordance with                                                                                                            |  |  |  |  |  |  |  |  |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Point load index | ISRM Suggested Methods (1985) Suggested method for determining point-load strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22, pp. 53–60 |  |  |  |  |  |  |  |  |  |  |
|                  | strength. Inc. J. Rock Mech. Mili. Sci. Geomech. Abstr. 22, pp. 33-00                                                                          |  |  |  |  |  |  |  |  |  |  |
| Uniaxial         | ISRM Suggested Methods (1981) Suggested method for determining                                                                                 |  |  |  |  |  |  |  |  |  |  |
| compression      | deformability of rock materials in uniaxial compression, Part 2                                                                                |  |  |  |  |  |  |  |  |  |  |
| strength tests   | and                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |
|                  | ISRM (2007) Ulusay R, Hudson JA (eds) The complete ISRM suggested methods                                                                      |  |  |  |  |  |  |  |  |  |  |
|                  | for rock characterization, testing and monitoring, 2007                                                                                        |  |  |  |  |  |  |  |  |  |  |

The test results are presented in Appendix F.

#### 5.3 Environmental laboratory testing of soils

Environmental testing, as specified by the Client's Representative was conducted on selected environmental soil samples by Chemtest at its laboratory in Newmarket, Suffolk.

Testing was carried out on a number of samples according to Engineer's Ireland Suite E and Suite H including testing for a range of determinants:

- Metals
- Speciated total petroleum hydrocarbons (TPH)
- Speciated polycyclic aromatic hydrocarbons (PAH)
- Cyanides
- Asbestos screen
- pH
- Waste acceptance criteria (WAC) testing

Results of environmental laboratory testing are presented in Appendix G.





#### **6 GROUND CONDITIONS**

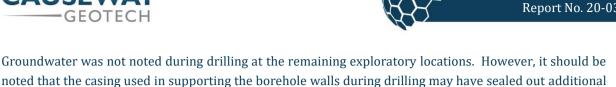
#### 6.1 General geology of the area

Published geological mapping indicate the superficial deposits underlying the site comprise mainly Glacial Till. These deposits are underlain by limestone and shale of the Lucan Formation. An area of gravels derived from limestone underlain by the Waulsortian Limestones was noted on the site's western boundary. East of the M50 on the Chapelizod Bypass is underlain by made ground, alluvium and glacial till.

### 6.2 Ground types encountered during investigation of the site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- Paved surface: boreholes R6-CP10 & R6-CP11 encountered 0.3mm of macadam surfacing. In addition, R6-TP01 had concrete down to 100mm. Concrete was encountered at 4.0mbgl in borehole R6-CP10
- **Topsoil:** the remainder of the site encountered topsoil in 0.1m-0.3m thickness.
- **Made Ground (sub-base):** approximately 1.0m of aggregate fill beneath the paved surfaces.
- **Made Ground (fill):** reworked sandy gravelly clay fill occasionally with fragments of concrete extending to a maximum depth of 4.0m at bridge abutment locations.
- **Alluvium:** very soft clay encountered at depths ranging 3.0m-4.0m in borehole R6-CP09
- **Glacial Till:** sandy gravelly clay, typically firm or stiff in upper horizons, becoming very stiff with increasing depth.
- Bedrock (Limestone): Rockhead was encountered at a depth of 7.6m in R6-CP07.


#### 6.3 Groundwater

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

Groundwater was encountered during percussion boring through soil as water strikes at 2.5m – 3.1m in boreholes R6-CP03 – R6-CP05 and R6-CP07. Groundwater was encountered in slit trench R6-TP02.



works should not be ruled out.



It should also be noted that any groundwater strikes within bedrock may have been masked by the fluid used as the drilling flush medium.

groundwater strikes and the possibility of encountering groundwater at other depths during excavation

Subsequent groundwater monitoring of the standpipe installation recorded water levels as shown in Table 1.

**Table 1: Groundwater monitoring** 

| Date       | Water level (mbgl) |
|------------|--------------------|
| Date       | R6-CP07            |
| 19/11/2020 | 6.35               |

Continued monitoring of the installed standpipe will give an indication of the seasonal variation in groundwater level which should be factored into design considerations.

#### 7 REFERENCES

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

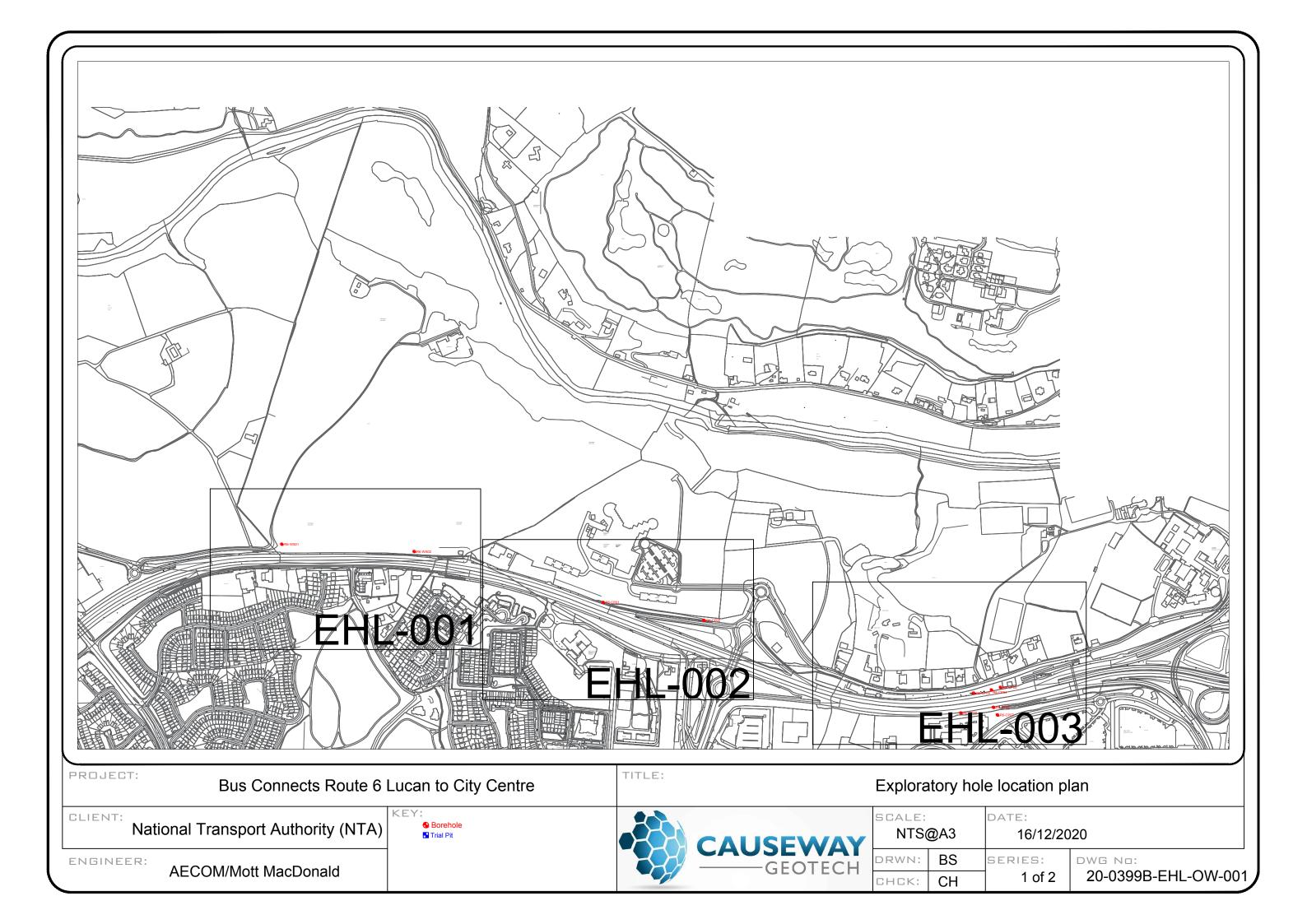
IS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. National Standards Authority of Ireland.

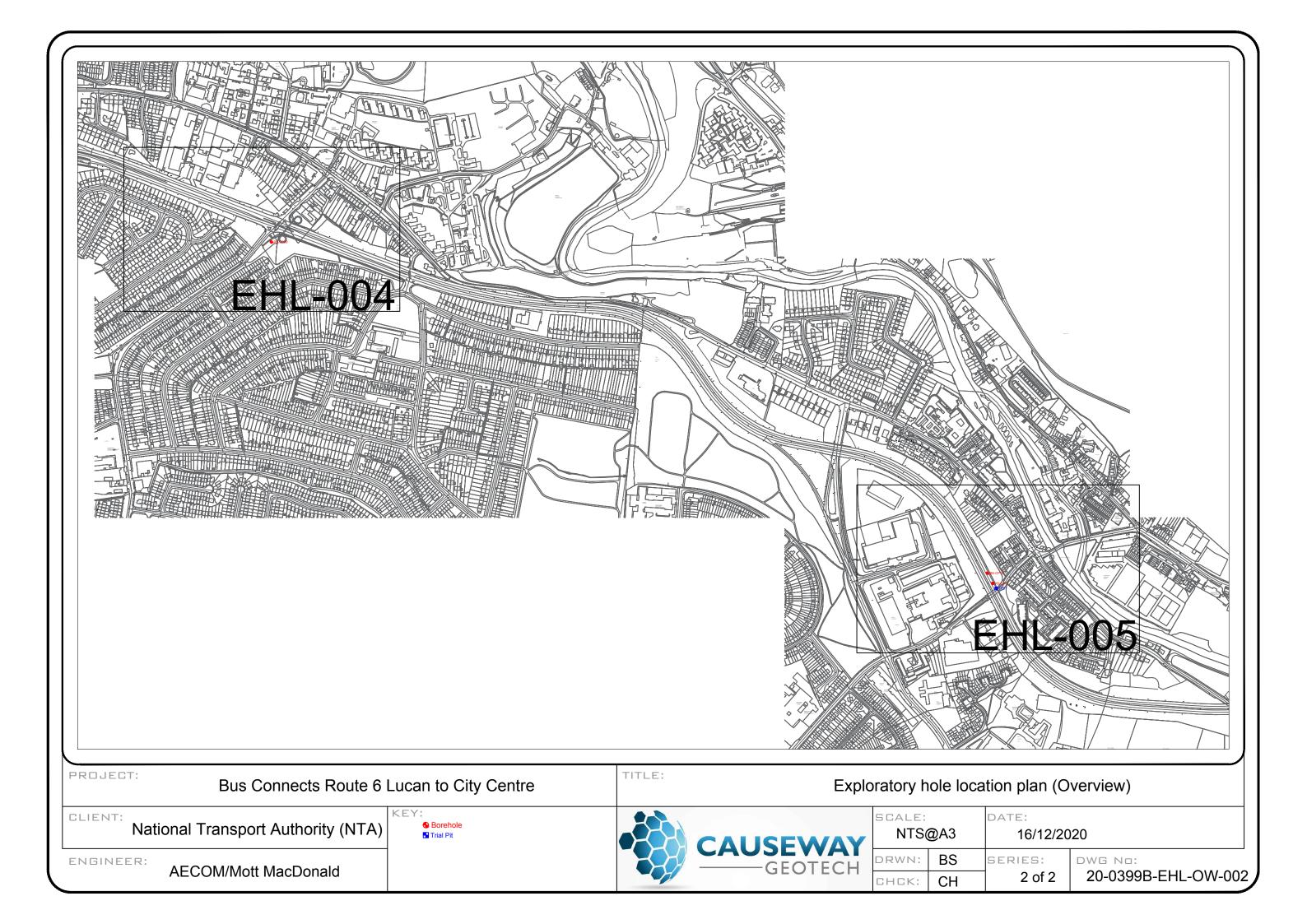
BS 5930: 2015: Code of practice for ground investigations. British Standards Institution.

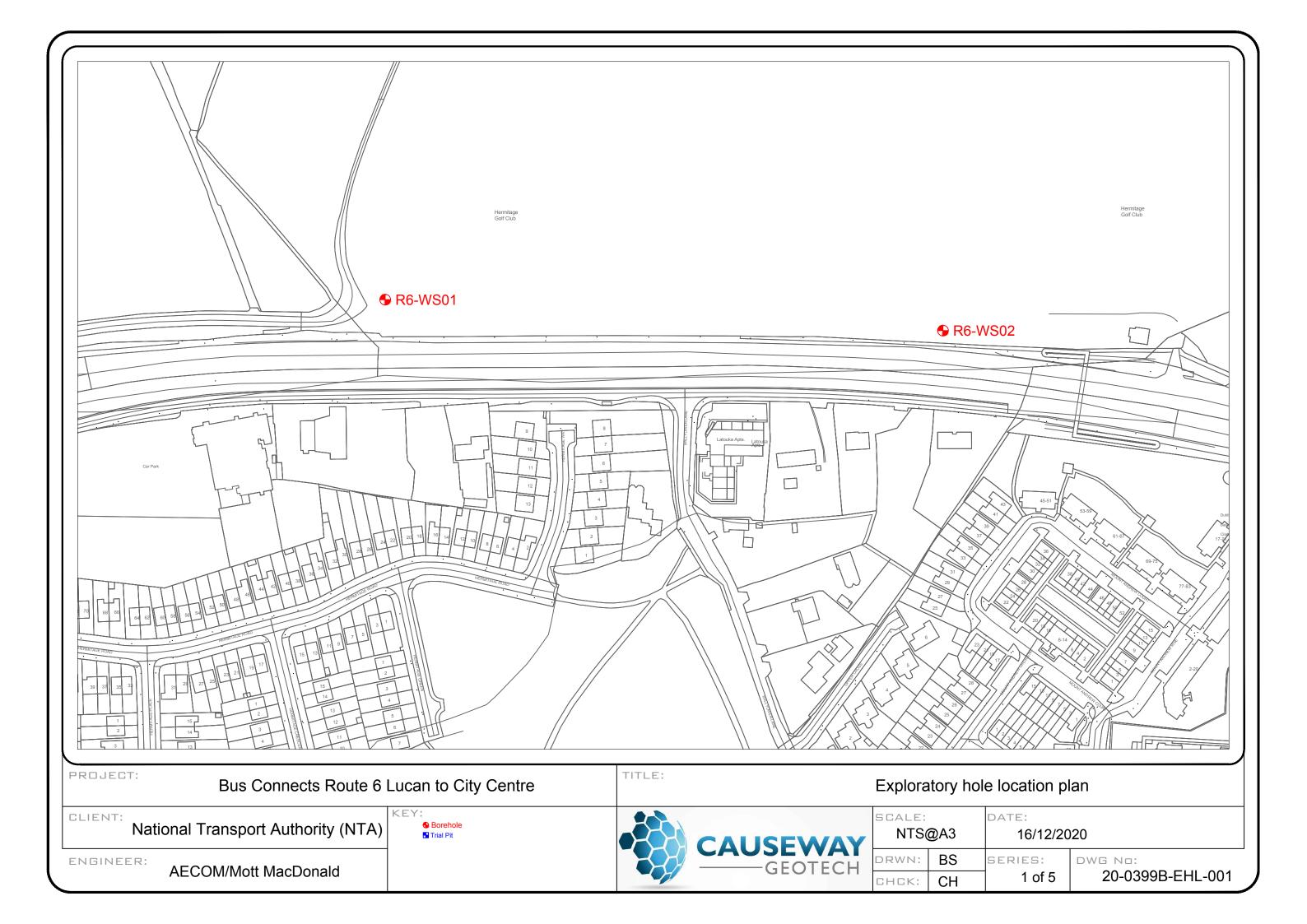
BS EN ISO 14688-1:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 1 Identification and description.

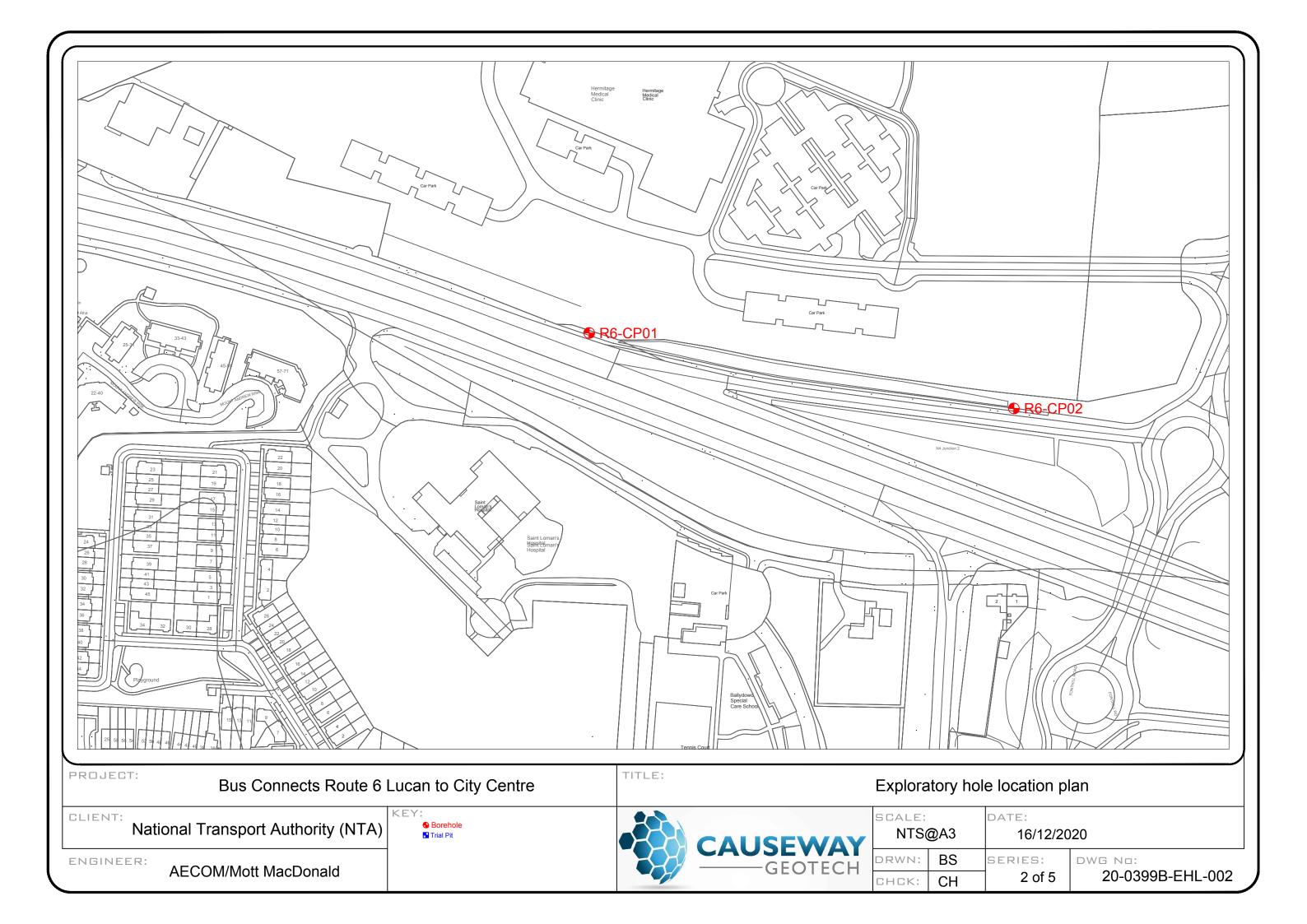
BS EN ISO 14688-2:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 2 Principles for a classification.

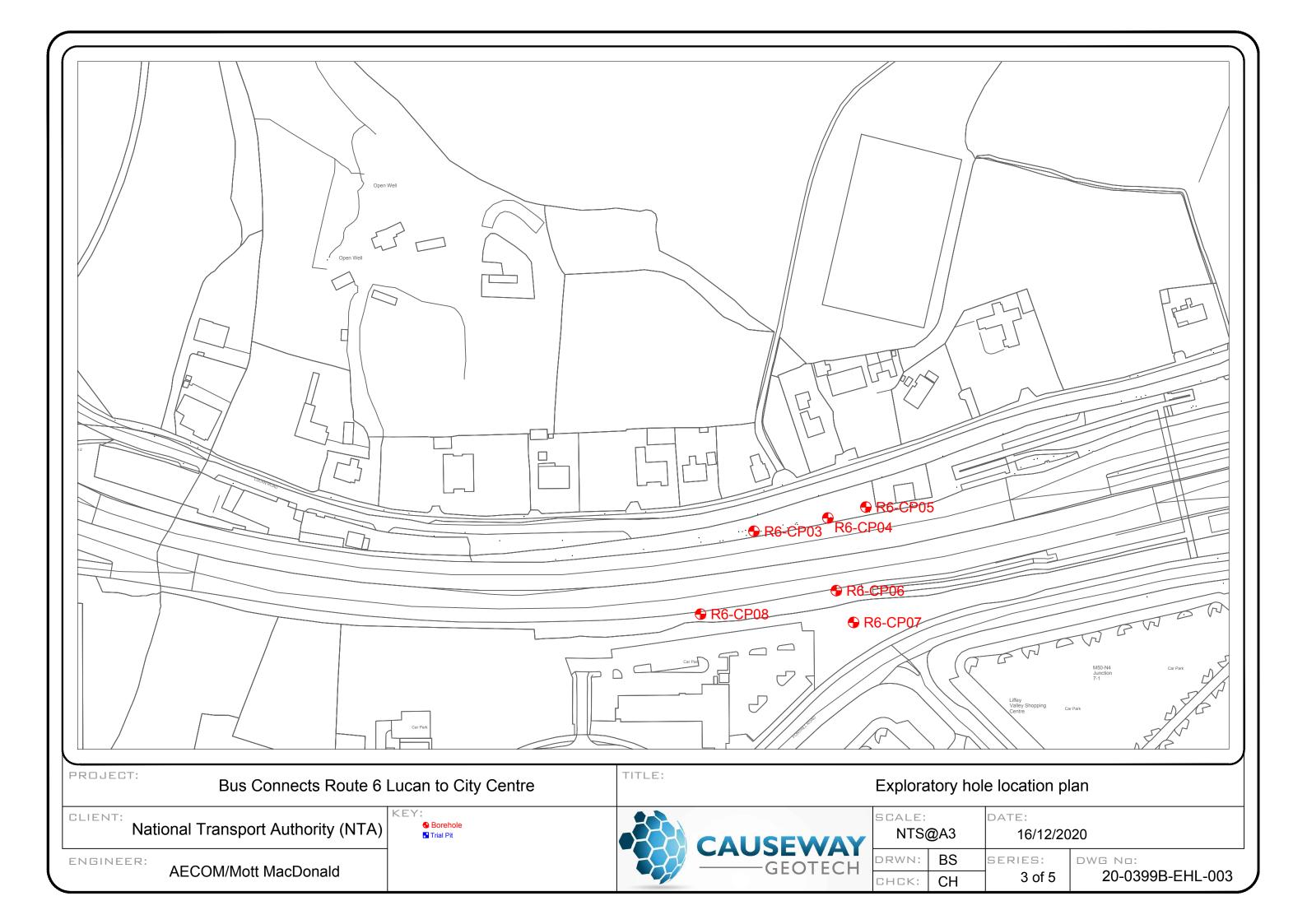
BS 1377: 1990: Methods of test for soils for civil engineering purposes. British Standards Institution.

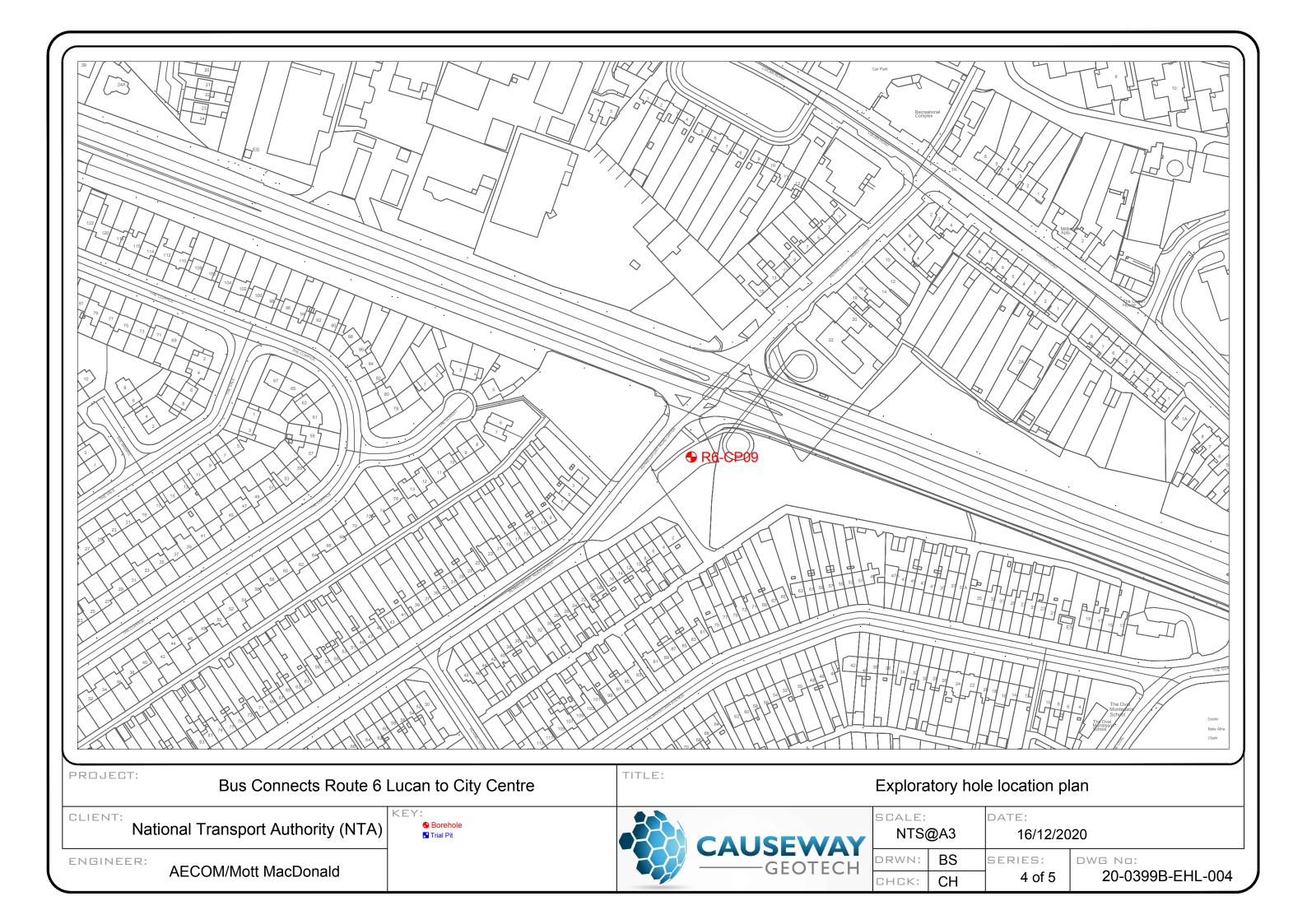

BS EN ISO 14689-1:2018: Geotechnical investigation and testing. Identification and classification of rock. Identification and description.

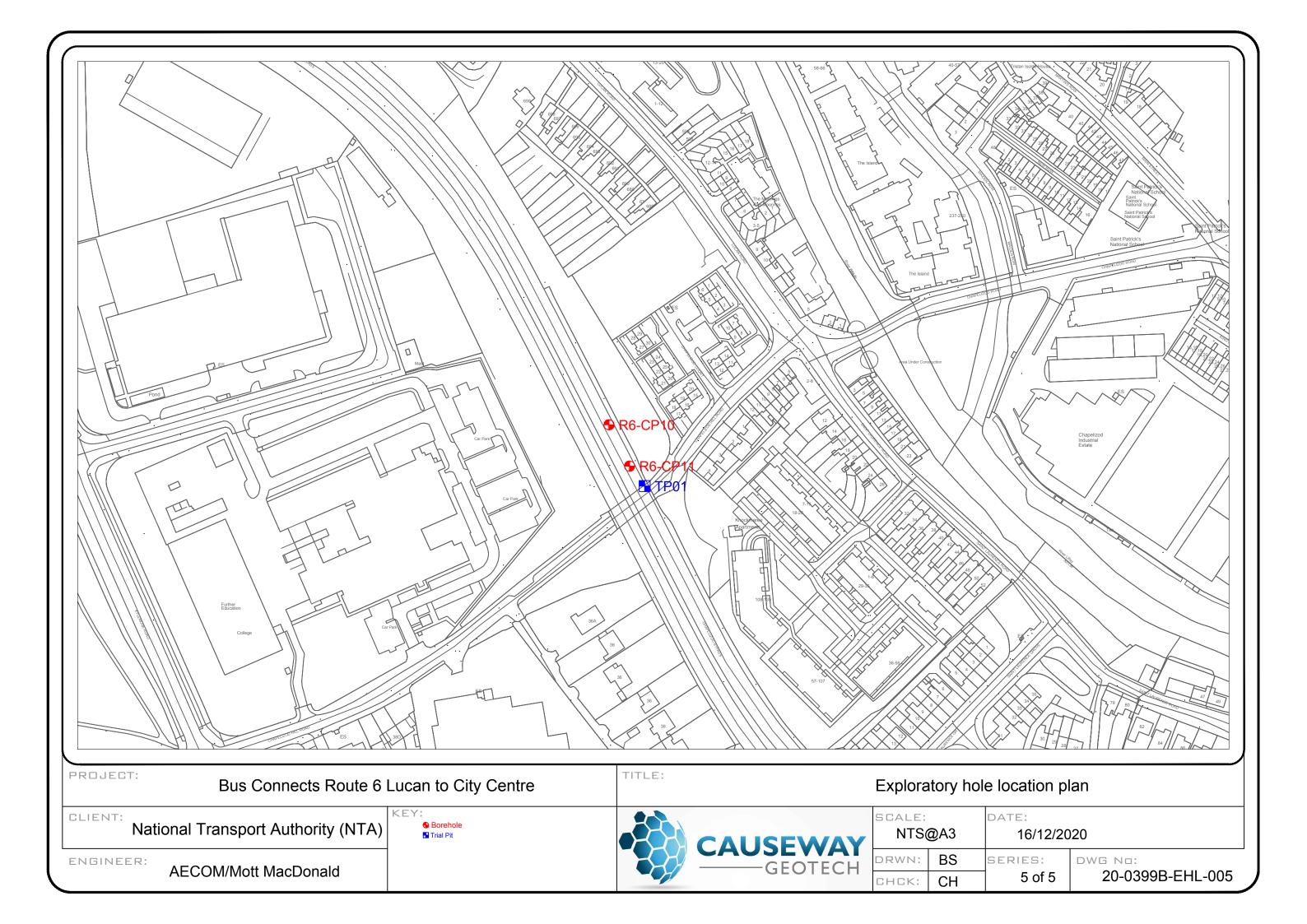

BS EN ISO 22476-3:2005+A1:2011: Geotechnical investigation and testing. Field testing. Standard penetration test.





# APPENDIX A EXPLORATORY HOLE LOCATION PLAN
















APPENDIX B
BOREHOLE LOGS



|                                                                        | CAUSEW                                        | ECH                 |                        |                       |                       | ect No.<br>399B                          | Project<br>Client:<br>Client's                                                  | National                                    | nects Route 6 Lucai<br>Transport Authorit<br>'Mott MacDonald |                                |       | orehole<br>R6-CP0       |     |
|------------------------------------------------------------------------|-----------------------------------------------|---------------------|------------------------|-----------------------|-----------------------|------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------|--------------------------------|-------|-------------------------|-----|
| Method<br>Cable Percussion                                             | Plant Used<br>Dando 2000                      | <b>Top (m)</b> 0.00 | Base<br>5.0            | -                     |                       | dinates<br>72.26 E                       | Final De                                                                        | <b>epth:</b> 5.00 m                         | <b>Start Date:</b> 19/10/2                                   | Driller: BM                    |       | heet 1 of<br>Scale: 1:4 |     |
|                                                                        |                                               |                     |                        |                       |                       | 31.46 N                                  | Elevatio                                                                        | on: 60.62 mOD                               | End Date: 19/10/2                                            | Logger: CH                     |       | FINAL                   |     |
| Depth Sample (m) Tests                                                 | Field Records                                 | i                   | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD<br>60.52 | Depth<br>(m)                             | Legend                                                                          | TOPSOIL                                     | Description                                                  |                                | Water | Backfill                | -   |
| .50 B5<br>.50 ES1<br>.00 B6<br>.00 ES2<br>.20 D10<br>.20 - 1.65 SPT (S | N=8 (2,2/2,2,2,2) Ham<br>0643                 | 1.20                | Dry                    | 59.62                 | - 1.00                | X - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 1 | MADE GROUND: So<br>coarse. Gravel is sul<br>lithologies.<br>Firm brown slightly |                                             | I fine to coarse of mixed  Y. Sand is fine to coarse.        |                                |       | 1.0                     |     |
| 00 B7<br>00 D11<br>00 ES3<br>00 - 2.45 SPT (S                          | N=9 (4,2/2,2,2,3) Ham<br>0643                 | mer SN =            | 1.50                   | Dry                   |                       |                                          | X - X - X - X - X - X - X - X - X - X -                                         |                                             |                                                              |                                |       |                         | 2.0 |
| .00 B8<br>.00 ES4<br>.00 - 3.45 U14                                    | Ublow=30 80%                                  |                     | 1.50                   | Dry                   |                       |                                          | × × × × × × × × × × × × × × × × × × ×                                           |                                             |                                                              |                                |       |                         | 3.0 |
| .00 B9<br>.00 D12<br>.00 - 4.45 SPT (S                                 | N=33 (5,5/7,8,8,10) Ha<br>= 0643              | ammer SN            | 1.50                   | Dry                   | 56.62                 | 4.00                                     | ***************************************                                         |                                             | gravelly CLAY. Sand is fin<br>ounded fine to coarse of       |                                |       |                         | 4.0 |
| .00 D13<br>.00 - 5.10 SPT (S                                           | ) N=50 (25 for 50mm/50<br>50mm) Hammer SN = ( |                     | 1.50                   | Dry                   | 55.92<br>55.62        | - 4.70<br>- 5.00                         |                                                                                 | Grey sandy angular<br>coarse. (Possible be  | coarse GRAVEL of limes<br>drock)<br>End of Borehole at 5     |                                |       |                         | 5.0 |
|                                                                        | er Strikes<br>m) Time (min) Rose to (r        | m) From 4.7(        | (m)                    | elling<br>To (i       |                       | e (hh:mm)                                |                                                                                 | nspection pit excavat<br>water encountered. | ed to 1.20m.                                                 |                                |       |                         | 6.5 |
| Casing Details To (m) Diamete 1.50 200                                 | Water Added r From (m) To (m)                 |                     |                        |                       |                       |                                          |                                                                                 | i <b>on Reason</b><br>d on refusal.         |                                                              | <b>Last Updated</b> 16/12/2020 |       | AG                      | _   |

|                        | C                 | AUSEM                               | /AY                |         |                     |              | ct No.<br>399B   | Project<br>Client: |                                  | nects Route 6 Lucan to<br>Transport Authority (N                                                            |                    | Borehole ID<br>R6-CP02 |                             |  |  |  |
|------------------------|-------------------|-------------------------------------|--------------------|---------|---------------------|--------------|------------------|--------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------|------------------------|-----------------------------|--|--|--|
|                        |                   | GEOT                                | ЕСП                |         |                     |              |                  | Client's           | Rep: AECOM/                      | Mott MacDonald                                                                                              |                    |                        |                             |  |  |  |
| Metho<br>Light Percu   |                   | Plant Used<br>Dando Terrier         | <b>Top (m</b> 0.00 | 1.9     |                     |              | inates           | Final De           | <b>epth:</b> 1.90 m              | <b>Start Date:</b> 22/10/2020                                                                               | <b>Driller:</b> JC |                        | Sheet 1 of 1<br>Scale: 1:50 |  |  |  |
|                        |                   |                                     |                    |         |                     |              | 5.22 E<br>0.10 N | Elevatio           | on: 52.79 mOD                    | End Date: 22/10/2020                                                                                        | Logger: CH         |                        | FINAL                       |  |  |  |
| Depth<br>(m)           | Sample /<br>Tests | Field Records                       | 5                  | Depth D | ater<br>epth<br>(m) | Level<br>mOD | Depth<br>(m)     | Legend             | 1                                | Description                                                                                                 | ,                  | Water                  | Backfill                    |  |  |  |
| 20 - 0.70              | B1                |                                     |                    |         |                     | 52.59        | 0.20             |                    |                                  | MADE GROUND: Grey angular to subangular fine to coarse GRAVEL of mixed lithologies. Sand is fine to coarse. |                    |                        |                             |  |  |  |
| 70 - 1.20              | B2                |                                     |                    |         |                     | 52.09        | 0.70             |                    |                                  | ravelly CLAY. Sand is fine to counded fine to coarse of mix                                                 |                    |                        |                             |  |  |  |
| 0                      | ES3               |                                     |                    |         |                     |              | -                |                    | Subungular to Subre              | variated fille to course of fills                                                                           | ed intilologies.   |                        | 1.                          |  |  |  |
| 20 - 1.90<br>20 - 1.65 |                   | N=29 (5,7/6,7,8,8) Hai<br>0696      | mmer SN :          | 0.00    |                     | 51.59        | 1.20             | × × ×              |                                  | gravelly sandy silty CLAY. San<br>r to subrounded fine to med                                               |                    |                        | 1.                          |  |  |  |
| 90<br>90 - 2.35        |                   | N=38 (6,9/9,11,11,7) F<br>SN = 0696 | Hammer             | 0.00    |                     | 50.89        | -<br>- 1.90<br>- | X                  |                                  | End of Borehole at 1.90m                                                                                    | l                  |                        | 2.                          |  |  |  |
|                        |                   |                                     |                    |         |                     |              | -<br>-<br>-<br>- |                    |                                  |                                                                                                             |                    |                        | 2.                          |  |  |  |
|                        |                   |                                     |                    |         |                     |              | -                |                    |                                  |                                                                                                             |                    |                        | 3.                          |  |  |  |
|                        |                   |                                     |                    |         |                     |              | -<br>-<br>-<br>- |                    |                                  |                                                                                                             |                    |                        | 3.                          |  |  |  |
|                        |                   |                                     |                    |         |                     |              | -                |                    |                                  |                                                                                                             |                    |                        | 4.                          |  |  |  |
|                        |                   |                                     |                    |         |                     |              | -                |                    |                                  |                                                                                                             |                    |                        | 4.                          |  |  |  |
|                        |                   |                                     |                    |         |                     |              | -<br>-<br>-      |                    |                                  |                                                                                                             |                    |                        | 5.                          |  |  |  |
|                        |                   |                                     |                    |         |                     |              | -                |                    |                                  |                                                                                                             |                    |                        | 5.                          |  |  |  |
|                        |                   |                                     |                    |         |                     |              | -                |                    |                                  |                                                                                                             |                    |                        | 6.                          |  |  |  |
|                        |                   |                                     |                    |         |                     |              | -<br>-<br>-      |                    |                                  |                                                                                                             |                    |                        | 6.                          |  |  |  |
|                        |                   |                                     |                    |         |                     |              | -                |                    |                                  |                                                                                                             |                    |                        | 7.                          |  |  |  |
|                        |                   |                                     |                    |         |                     |              | [<br>-<br>-      |                    |                                  |                                                                                                             |                    |                        | 7.                          |  |  |  |
|                        |                   |                                     |                    |         |                     |              | _<br>_<br>_      |                    |                                  |                                                                                                             |                    |                        | 8.                          |  |  |  |
|                        |                   |                                     |                    |         |                     |              | -                |                    |                                  |                                                                                                             |                    |                        | 8.                          |  |  |  |
|                        |                   |                                     |                    |         |                     |              | -<br>-<br>-      |                    |                                  |                                                                                                             |                    |                        | 9.                          |  |  |  |
|                        |                   | Strikes                             |                    | sing De | tails               | Rei          | marks            |                    |                                  |                                                                                                             |                    |                        |                             |  |  |  |
| ck at (m) Ca           | asing to (m       | Time (min) Rose to (                | m) To (            | m) [    | iamet               |              |                  | pection pit        | t excavated to 1.20m.<br>ntered. |                                                                                                             |                    |                        |                             |  |  |  |
|                        |                   |                                     |                    |         |                     | Ter          | minatio          | n Reason           |                                  |                                                                                                             | Last Updated       |                        | \AG:                        |  |  |  |

|                         |                         | Project No. | Project Name:         |                      |           | Probe ID     |
|-------------------------|-------------------------|-------------|-----------------------|----------------------|-----------|--------------|
|                         | CALICEVAVAV             | 20-0399B    | Bus Connects Route    | 6 Lucan to City Cent | re        |              |
|                         | CAUSEWAY<br>GEOTECH     | Coordinates | Client:               | -                    |           | R6-          |
|                         | ——GEOTECH               | 706305.22 E | National Transport Au | uthority (NTA)       |           | CP02DP       |
| Method:                 |                         | 7           | Client's Representat  | tive:                |           | Sheet 1 of 1 |
| Dynamic Probing         |                         | 735340.10 N | AECOM/Mott MacDo      | nald                 |           | Scale: 1:50  |
| Probe Type:             |                         | Elevation   | Final Depth:          | Date:                | Operator: |              |
| DPSH-B                  |                         | 52.79 mOD   | 3.05                  |                      | JC        | FINAL        |
| Depth                   |                         | '           | Blows/100mm           | •                    | •         | Torque       |
| (m)                     | 10                      | 20          | 30                    | 4                    | 0         | (Nm)         |
|                         |                         |             |                       |                      |           |              |
| _                       |                         |             |                       |                      |           |              |
| <del>-</del><br>-       |                         |             |                       |                      |           |              |
| <del>-</del><br>-       |                         |             |                       |                      |           |              |
| _ 1                     |                         |             |                       |                      |           |              |
| <u>-</u>                |                         |             |                       |                      |           |              |
| =<br>                   |                         |             |                       |                      |           |              |
| -<br> -                 |                         |             |                       |                      |           |              |
| _ 2                     |                         |             |                       |                      |           |              |
|                         |                         |             |                       |                      |           |              |
| -<br> -                 | 9 10                    |             |                       |                      |           |              |
|                         | 9 9                     | _           |                       |                      |           |              |
| -<br>3                  |                         | 15          |                       |                      | 39        | 50           |
| -                       |                         |             |                       |                      |           | 30           |
| _                       |                         |             |                       |                      |           |              |
| <u>-</u>                |                         |             |                       |                      |           |              |
| -<br>4                  |                         |             |                       |                      |           |              |
| - <b>4</b><br>-         |                         |             |                       |                      |           |              |
| <u>-</u>                |                         |             |                       |                      |           |              |
|                         |                         |             |                       |                      |           |              |
| -                       |                         |             |                       |                      |           |              |
| _ 5<br>_                |                         |             |                       |                      |           |              |
| <del>-</del><br>-       |                         |             |                       |                      |           |              |
| <del>-</del><br>-<br>-  |                         |             |                       |                      |           |              |
| -<br>                   |                         |             |                       |                      |           |              |
| <del>_</del> 6          |                         |             |                       |                      |           |              |
| _<br>-                  |                         |             |                       |                      |           |              |
| <del>-</del><br>-       |                         |             |                       |                      |           |              |
| _<br>_<br>_             |                         |             |                       |                      |           |              |
| <del>-</del> 7          |                         |             |                       |                      |           |              |
| <u>-</u>                |                         |             |                       |                      |           |              |
| <u> </u>                |                         |             |                       |                      |           |              |
| _                       |                         |             |                       |                      |           |              |
| 8                       |                         |             |                       |                      |           |              |
| <u>-</u>                |                         |             |                       |                      |           |              |
|                         |                         |             |                       |                      |           |              |
| _<br>-                  |                         |             |                       |                      |           |              |
| _<br>_ 9                |                         |             |                       |                      |           |              |
| _                       |                         |             |                       |                      |           |              |
| E                       |                         |             |                       |                      |           |              |
|                         |                         |             |                       |                      |           |              |
| _                       |                         |             |                       |                      |           |              |
| Fall Height:            | Remarks:                |             |                       |                      |           |              |
| 750 mm                  | Follow on from R6-CP02. |             |                       |                      |           |              |
| Hammer Mass:            |                         |             |                       |                      |           |              |
| 64 kg                   |                         |             |                       |                      |           |              |
| Cone Diameter:<br>51 mm |                         |             |                       |                      |           | <b>W</b> AGS |

|                                                                                                                                                | CAUSEW                                                                                                                                  | ECH                 |                                        | 20-(                                   | ect No.<br>0399B                              | Project<br>Client:<br>Client's | National                                                                                                                                                                                                                                   | nects Route 6 Lucar<br>Transport Authorit<br>'Mott MacDonald                                                                                                             |                                                                                                                                                                                                      |       | orehole<br>R6-CP(              |                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------|----------------------------------------|-----------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------|---------------------------------|
| Method<br>Cable Percussion                                                                                                                     | Plant Used Dando 2000                                                                                                                   | <b>Top (m)</b> 0.00 | 4.00                                   | 7069                                   | 28.72 E<br>71.78 N                            | Final De                       | -                                                                                                                                                                                                                                          | Start Date: 20/10/2 End Date: 20/10/2                                                                                                                                    |                                                                                                                                                                                                      |       | heet 1 o<br>Scale: 1:<br>FINAL | :40                             |
| Depth Sample /<br>(m) Tests                                                                                                                    | Field Records                                                                                                                           |                     | Casing Water<br>Depth Depth<br>(m) (m) | Level<br>mOD                           | Depth<br>(m)                                  | Legend                         | 1                                                                                                                                                                                                                                          | Description                                                                                                                                                              |                                                                                                                                                                                                      | Water | Backfill                       |                                 |
| (m) Tests  .50 B5 .50 ES1  .00 B6 .00 ES2 .20 - 1.65 U12  .00 B7 .00 D10 .00 ES3 .00 - 2.45 SPT (S)  .00 B8 .00 D11 .00 ES4 .00 - 3.45 SPT (S) | Ublow=50 90%  N=10 (2,2/2,2,2,4) Ham 0643  N=10 (2,3/2,3,2,3) Ham 0643  Water strike at 3.00m  N=50 (25 for 25mm/50 50mm) Hammer SN = 0 | nmer SN =           | 1.00 Dry 1.50 3.00 1.50 3.00           | ## ## ## ## ## ## ## ## ## ## ## ## ## | (m) - 0.10 - 0.40 - 1.00 - 1.20 - 1.20 - 1.20 |                                | coarse. Gravel is sul<br>lithologies.<br>MADE GROUND: Gr<br>lithologies. Sand is in<br>MADE GROUND: So<br>coarse. Gravel is sul<br>lithologies.<br>Brown fine to coars<br>Soft becoming firm<br>fine to coarse. Grav<br>mixed lithologies. | oft brown sandy gravelly bangular to subrounded rey sandy subrounded Gfine to coarse. oft brown sandy gravelly bangular to subrounded e SAND.  brown slightly gravelly s | fine to coarse of mixed  RAVEL of mixed  CLAY. Sand is fine to fine to coarse of mixed  andy silty CLAY. Sand is bunded fine to medium of the coarse of mixed fine to medium of the coarse of mixed. |       | Backfill                       | 2.5<br>3.4<br>4.4<br>5.4<br>6.3 |
|                                                                                                                                                | n) Time (min) Rose to (n  Water Added                                                                                                   |                     |                                        |                                        | me (hh:mm)<br>01:00                           | Remarks<br>Hand dug ii         | nspection pit excavate                                                                                                                                                                                                                     | ed to 1.20m.                                                                                                                                                             |                                                                                                                                                                                                      |       |                                |                                 |
|                                                                                                                                                |                                                                                                                                         |                     |                                        |                                        |                                               |                                | on Reason  on refusal.                                                                                                                                                                                                                     |                                                                                                                                                                          | <b>Last Updated</b> 16/12/2020                                                                                                                                                                       | W     | AC                             | _<br>}{                         |

|                                               |                   | CAUSEM                                                             | ECH            |                        |                       | 20-0         | ct No.<br>399B      | Client: National Transport Authority (NTA) Client's Rep: AECOM/Mott MacDonald |                                                                         |                |                    |                            |                        | R6-CP04  |       |  |  |  |
|-----------------------------------------------|-------------------|--------------------------------------------------------------------|----------------|------------------------|-----------------------|--------------|---------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------|--------------------|----------------------------|------------------------|----------|-------|--|--|--|
| Metho<br>Light Percu                          |                   | Plant Used Dando Terrier                                           | <b>Top (m)</b> | 3.6                    |                       | Coord        | linates             | Final De                                                                      | <b>epth:</b> 3.60 m                                                     | 21/10/2020     | <b>Driller:</b> JC |                            | Sheet 1 o<br>Scale: 1: |          |       |  |  |  |
| 0                                             |                   |                                                                    |                |                        |                       |              | 69.62 E<br>79.08 N  | Elevatio                                                                      | on: 51.36 mOD                                                           | End Date:      | 21/10/2020         | Logger: SF                 |                        | FINAL    |       |  |  |  |
| Depth<br>(m)                                  | Sample /<br>Tests | Field Records                                                      |                | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD | Depth<br>(m)        | Legend                                                                        | -                                                                       | Des            | cription           | <del></del>                | Water                  | Backfill |       |  |  |  |
| .10<br>.10 - 1.20<br>.50                      | ES1<br>B1<br>ES2  |                                                                    |                |                        |                       | 51.26        | 0.10                |                                                                               | TOPSOIL<br>MADE GROUND: St<br>content and concre<br>subangular to subro | ete fragments. | Sand is fine to c  | oarse. Gravel is           |                        |          | 0.5   |  |  |  |
| .20 - 1.70<br>.20 - 1.65<br>.70<br>.70 - 2.00 | B4<br>SPT (S)     | N=36 (8,12/13,7,7,9) F<br>SN = 0696<br>Ublow=127 80%               | Hammer         | 0.00                   |                       | 49.66        | 1.70                | , , , , , , , , , , , , , , , , , , ,                                         | Stiff brown sandy g<br>subrounded to sub-                               |                |                    |                            |                        |          | 1.5   |  |  |  |
| .50                                           | D7                |                                                                    |                |                        |                       |              | -<br>-<br>-<br>-    | (                                                                             |                                                                         |                |                    |                            |                        |          | 2.5   |  |  |  |
| .00<br>.00 - 3.60<br>.00 - 3.45               |                   | N=4 (2,1/1,1,1,1) Ham<br>0696                                      | mer SN =       | 0.00                   | 3.30                  | 48.36        | 3.00                | ( × × × × × × × × × × × × × × × × × × ×                                       | Soft brown sandy g<br>to coarse. Gravel is<br>mixed lithologies.        |                |                    |                            |                        |          | 3.0 - |  |  |  |
| .60 - 3.78                                    | SPT (C)           | Water strike at 3.00m<br>N=50 (19,25/50 for 30<br>Hammer SN = 0696 | mm)            | 0.00                   | Dry                   | 47.76        | 3.60                | Č× ×.X                                                                        |                                                                         | End of Bore    | ehole at 3.60m     |                            |                        |          | 3.5   |  |  |  |
|                                               |                   |                                                                    |                |                        |                       |              | -<br>-<br>-         |                                                                               |                                                                         |                |                    |                            |                        |          | 4.5   |  |  |  |
|                                               |                   |                                                                    |                |                        |                       |              | -<br>-<br>-         |                                                                               |                                                                         |                |                    |                            |                        |          | 5.0 - |  |  |  |
|                                               |                   |                                                                    |                |                        |                       |              | -<br>-<br>-<br>-    |                                                                               |                                                                         |                |                    |                            |                        |          | 5.5   |  |  |  |
|                                               |                   |                                                                    |                |                        |                       |              | -<br>-<br>-         |                                                                               |                                                                         |                |                    |                            |                        |          | 6.0   |  |  |  |
|                                               |                   |                                                                    |                |                        |                       |              | -                   |                                                                               |                                                                         |                |                    |                            |                        |          | 6.5   |  |  |  |
|                                               |                   |                                                                    |                |                        |                       |              | -                   |                                                                               |                                                                         |                |                    |                            |                        |          | 7.0   |  |  |  |
|                                               |                   |                                                                    |                |                        |                       |              | -                   |                                                                               |                                                                         |                |                    |                            |                        |          | 7.5   |  |  |  |
|                                               |                   |                                                                    |                |                        |                       |              | -                   |                                                                               |                                                                         |                |                    |                            |                        |          | 8.0   |  |  |  |
|                                               |                   |                                                                    |                |                        |                       |              | -                   |                                                                               |                                                                         |                |                    |                            |                        |          | 8.5   |  |  |  |
|                                               |                   |                                                                    |                |                        |                       |              | -                   |                                                                               |                                                                         |                |                    |                            |                        |          | 9.0   |  |  |  |
| uck at (m) Ca                                 |                   | Strikes Time (min) Rose to (1) Time 20 Time 20                     |                | nsing C                | <b>Detail</b> s       |              | marks<br>nd dug ins | spection pi                                                                   | t excavated to 1.20m.                                                   |                |                    |                            |                        | •        |       |  |  |  |
|                                               |                   |                                                                    |                |                        |                       |              |                     |                                                                               |                                                                         |                |                    |                            |                        |          |       |  |  |  |
|                                               |                   |                                                                    |                |                        |                       |              |                     | n Reason                                                                      |                                                                         |                |                    | Last Updated<br>16/12/2020 |                        | \AC      |       |  |  |  |

|                                                                                   | <i>y</i> –                                                      | GEOT                                                                                                                                                      | ECH                 |                        |                       | 20-0         | ct No.<br>399B       | Project<br>Client:<br>Client's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                           |                                                                                   | R6-CP05 |                       |                                                 |  |  |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|-----------------------|--------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------|-----------------------|-------------------------------------------------|--|--|
| Method<br>Light Percus                                                            |                                                                 | Plant Used Dando Terrier                                                                                                                                  | <b>Top (m)</b> 0.00 | <b>Base</b> 3.5        | _                     | Coordinates  |                      | Final De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Start Date:</b> 20/10/202                                                                                                                                                                                                                                                                                                                              | <b>Driller:</b> JC                                                                |         | heet 1 o<br>Scale: 1: |                                                 |  |  |
| J                                                                                 |                                                                 |                                                                                                                                                           |                     |                        |                       |              | 0.65 E<br>5.16 N     | Elevatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n: 51.55 mOD <b>End Date:</b> 20/10/202                                                                                                                                                                                                                                                                                                                   | D Logger: CH                                                                      |         | FINAL                 |                                                 |  |  |
| Depth<br>(m)                                                                      | Sample /<br>Tests                                               | Field Records                                                                                                                                             |                     | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD | Depth<br>(m)         | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Description                                                                                                                                                                                                                                                                                                                                               | <u>'</u>                                                                          | Water   | Backfill              |                                                 |  |  |
| (m) 1.10 - 1.20 1.50 1.00 1.20 1.20 - 1.65 1.00 1.50 1.50 1.50 1.50 1.50 1.50 1.5 | Tests B1 ES2 ES3 D4 SPT (S) U5 D6 ES6 B7 D9 ES8 SPT (S) SPT (C) | N=15 (3,3/2,4,5,4) Har<br>0696<br>Ublow=86 100%<br>N=30 (4,6/5,4,9,12) Ha<br>= 0696<br>Water strike at 3.10m<br>N=50 (20,37/50 for 60<br>Hammer SN = 0696 | nmer SN =           | 0.00<br>0.00           | Dry Dry               |              |                      | Legend  The state of the state | Description  TOPSOIL  MADE GROUND: Firm becoming stiff brown saligh tobble content. Sand is fine to coarse. Grasubrounded fine to coarse of mixed lithologies subrounded of mixed lithologies.  Stiff becoming very stiff brown slightly sandy si Sand is fine to coarse. Gravel is subangular to scoarse of mixed lithologies.  End of Borehole at 3.52r | vel is subangular to<br>Cobbles are<br>ightly gravelly CLAY.<br>ubrounded fine to |         | Backfill              | 0.5 1.0 1.5 2.0 3.0 4.5 5.0 6.0 6.5 7.0 8.0 8.5 |  |  |
|                                                                                   |                                                                 |                                                                                                                                                           |                     |                        |                       |              | <u> </u>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                           |                                                                                   |         |                       | 9.0                                             |  |  |
|                                                                                   |                                                                 | Strikes ) Time (min) Rose to ( 20 2.90                                                                                                                    |                     | sing D                 | <b>etails</b>         |              | marks<br>and dug ins | spection pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | excavated to 1.20m.                                                                                                                                                                                                                                                                                                                                       |                                                                                   | •       |                       |                                                 |  |  |
|                                                                                   |                                                                 |                                                                                                                                                           |                     |                        |                       | Ter          | minatio              | n Reason                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                           | Last Updated 16/12/2020                                                           |         | AG                    | _                                               |  |  |

|                           |                   | GEOT                           | ECH            | T                      |                       | 20-0                  | ct No.<br>399B         | Client: National Transport Authority (NTA) Client's Rep: AECOM/Mott MacDonald |                                              |                |                   |                 |            |       | R6-CP06               |     |  |  |  |
|---------------------------|-------------------|--------------------------------|----------------|------------------------|-----------------------|-----------------------|------------------------|-------------------------------------------------------------------------------|----------------------------------------------|----------------|-------------------|-----------------|------------|-------|-----------------------|-----|--|--|--|
| Metho<br>Light Percu      |                   | Plant Used Dando Terrier       | <b>Top (m)</b> | Base<br>2.0            |                       |                       | 4.30 E                 | Final De                                                                      | <b>epth:</b> 2.60 m                          | Start Date:    | 21/10/2020        | Driller:        | JC         |       | heet 1 c<br>Scale: 1: |     |  |  |  |
|                           |                   |                                |                |                        |                       |                       | 8.90 N                 | Elevatio                                                                      | on: 51.61 mOD                                | End Date:      | 21/10/2020        | Logger:         | СН         |       | FINAI                 | L   |  |  |  |
| Depth<br>(m)<br>10 - 0.40 | Sample /<br>Tests | Field Records                  | ;              | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD<br>51.51 | Depth<br>(m)           | Legend                                                                        | TOPSOIL                                      | Des            | cription          |                 |            | Water | Backfill              |     |  |  |  |
| 10 - 0.40                 | PI                |                                |                |                        |                       | 31.31                 | 0.10                   |                                                                               | MADE GROUND: Gr<br>GRAVEL of mixed lit       |                | _                 |                 | arse       | 1     |                       |     |  |  |  |
| 50<br>60 - 1.20           | ES2<br>B3         |                                |                |                        |                       | 51.01                 | 0.60                   |                                                                               | MADE GROUND: Lig                             |                |                   |                 | <b>Υ</b> Α |       |                       | 0.5 |  |  |  |
|                           |                   |                                |                |                        |                       |                       | [                      |                                                                               | GRAVEL of mixed lit                          |                | iai to subangulai | mic to coai     | 30         |       |                       | 1.0 |  |  |  |
| 00<br>20 - 1.80           | ES4<br>B5         |                                |                |                        |                       | 50.41                 | 1.20                   |                                                                               | MADE GROUND: Lo                              | ose light grev | angular to suba   | ngular fine t   | ·n         |       |                       | 1.0 |  |  |  |
| 20 - 1.65                 |                   | N=6 (1,1/2,1,2,1) Ham<br>0696  | mer SN =       | 0.00                   | Dry                   |                       | -                      |                                                                               | coarse GRAVEL of m                           |                | -                 | rigulai iliic t |            |       |                       | 1.5 |  |  |  |
|                           | 200               |                                |                |                        |                       | 49.81                 | 1.80                   |                                                                               | Very stiff brown sar                         | ndy gravally C | LAV with low coh  | hle content     | Sand is    |       |                       |     |  |  |  |
| 90<br>90                  | D6<br>ES6         |                                |                |                        |                       |                       | -                      |                                                                               | fine to coarse. Grav<br>mixed lithologies. C | el is subangu  | lar to subrounde  | d fine to coa   | rse of     |       |                       | 2.0 |  |  |  |
| 00<br>00                  | 1                 | Ublow=140 100%                 |                | 0.00                   | Dry                   |                       | -                      |                                                                               | lithologies.                                 |                |                   | Sanaca Of I     | u          |       |                       | 1   |  |  |  |
| 50<br>60 - 2.85           | D8<br>SPT (C)     | N=50 (6,14/50 for 100          | mm)            | 0.00                   | Dry                   | 49.01                 | 2.60                   | 0 0 0 0                                                                       |                                              | End of Bor     | ehole at 2.60m    |                 |            |       |                       | 2.5 |  |  |  |
|                           |                   | Hammer SN = 0696               |                |                        |                       |                       | _                      |                                                                               |                                              |                |                   |                 |            |       |                       | 3.0 |  |  |  |
|                           |                   |                                |                |                        |                       |                       | [                      |                                                                               |                                              |                |                   |                 |            |       |                       |     |  |  |  |
|                           |                   |                                |                |                        |                       |                       | F                      |                                                                               |                                              |                |                   |                 |            |       |                       | 3.5 |  |  |  |
|                           |                   |                                |                |                        |                       |                       |                        |                                                                               |                                              |                |                   |                 |            |       |                       |     |  |  |  |
|                           |                   |                                |                |                        |                       |                       | -                      |                                                                               |                                              |                |                   |                 |            |       |                       | 4.0 |  |  |  |
|                           |                   |                                |                |                        |                       |                       | E                      |                                                                               |                                              |                |                   |                 |            |       |                       | 4.5 |  |  |  |
|                           |                   |                                |                |                        |                       |                       | -                      |                                                                               |                                              |                |                   |                 |            |       |                       | 4.3 |  |  |  |
|                           |                   |                                |                |                        |                       |                       |                        |                                                                               |                                              |                |                   |                 |            |       |                       | 5.0 |  |  |  |
|                           |                   |                                |                |                        |                       |                       |                        |                                                                               |                                              |                |                   |                 |            |       |                       |     |  |  |  |
|                           |                   |                                |                |                        |                       |                       | -                      |                                                                               |                                              |                |                   |                 |            |       |                       | 5.5 |  |  |  |
|                           |                   |                                |                |                        |                       |                       |                        |                                                                               |                                              |                |                   |                 |            |       |                       |     |  |  |  |
|                           |                   |                                |                |                        |                       |                       | -                      |                                                                               |                                              |                |                   |                 |            |       |                       | 6.0 |  |  |  |
|                           |                   |                                |                |                        |                       |                       | Ė                      |                                                                               |                                              |                |                   |                 |            |       |                       | 6.5 |  |  |  |
|                           |                   |                                |                |                        |                       |                       | -                      |                                                                               |                                              |                |                   |                 |            |       |                       | 0.3 |  |  |  |
|                           |                   |                                |                |                        |                       |                       | [<br>-                 |                                                                               |                                              |                |                   |                 |            |       |                       | 7.0 |  |  |  |
|                           |                   |                                |                |                        |                       |                       |                        |                                                                               |                                              |                |                   |                 |            |       |                       |     |  |  |  |
|                           |                   |                                |                |                        |                       |                       | -                      |                                                                               |                                              |                |                   |                 |            |       |                       | 7.5 |  |  |  |
|                           |                   |                                |                |                        |                       |                       |                        |                                                                               |                                              |                |                   |                 |            |       |                       |     |  |  |  |
|                           |                   |                                |                |                        |                       |                       | _                      |                                                                               |                                              |                |                   |                 |            |       |                       | 8.0 |  |  |  |
|                           |                   |                                |                |                        |                       |                       | -                      |                                                                               |                                              |                |                   |                 |            |       |                       | 8.5 |  |  |  |
|                           |                   |                                |                |                        |                       |                       | -                      |                                                                               |                                              |                |                   |                 |            |       |                       | 0.3 |  |  |  |
|                           |                   |                                |                |                        |                       |                       | F                      |                                                                               |                                              |                |                   |                 |            |       |                       | 9.0 |  |  |  |
|                           |                   |                                |                |                        |                       |                       |                        |                                                                               |                                              |                |                   |                 |            |       |                       | _   |  |  |  |
| ck at (m) Ca              |                   | Strikes ) Time (min) Rose to ( |                | sing [                 | <b>Detail</b><br>Diam |                       | marks                  | nection :                                                                     | t everyated to 1 30                          |                |                   |                 |            |       |                       |     |  |  |  |
| u. (111) Ca               | -38 60 (111       | , () 1030 10 (1                | , 10 (1        | ,                      | uIIII                 |                       | na aug ins<br>groundwa |                                                                               | t excavated to 1.20m.<br>ntered.             |                |                   |                 |            |       |                       |     |  |  |  |
|                           |                   |                                |                |                        |                       |                       |                        |                                                                               |                                              |                |                   |                 |            |       |                       |     |  |  |  |
|                           |                   |                                |                |                        |                       |                       |                        |                                                                               |                                              |                |                   |                 |            |       |                       |     |  |  |  |
|                           |                   |                                |                |                        |                       |                       |                        |                                                                               |                                              |                |                   |                 |            |       |                       |     |  |  |  |
|                           |                   |                                |                |                        |                       | Ter                   | mination               | . Posco-                                                                      |                                              |                | 1                 | lact Had        | ated       |       |                       |     |  |  |  |
|                           |                   |                                |                |                        |                       | liei                  | ınınatıoı              | ı keason                                                                      |                                              |                |                   | Last Upda       | icea ,     | -     | AC                    |     |  |  |  |

|                                                    |                                              |                              | EC     | OTI   | ECI   | Н        | <b>In</b>              | ()                    | 20-0                       | ect No.                          | Project<br>Client:<br>Client's                              |                                                                                                                |                                     | Authority (N7      |                 | re        | 1     | oreho             | P07   |
|----------------------------------------------------|----------------------------------------------|------------------------------|--------|-------|-------|----------|------------------------|-----------------------|----------------------------|----------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------|-----------------|-----------|-------|-------------------|-------|
| Meth<br>Light Perc                                 | cussion                                      | Plant U<br>Dando To          | errie  |       | 0.    | 00       | <b>Base</b><br>4.0     | 00                    |                            | dinates                          | Final De                                                    | <b>epth:</b> 10.70 m                                                                                           | Start Date:                         | 24/09/2020         | Driller:        | JC+KW     |       | Sheet 1<br>Scale: |       |
| Rotary D<br>Rotary C                               |                                              | Hanjin<br>Hanjin             |        |       | 1     | 00<br>20 | 5.2<br>10.             |                       | 706983.83 E<br>735121.30 N |                                  | Elevatio                                                    | on: 56.05 mOD <b>End Date</b> : 23/10/202                                                                      |                                     |                    | Logger:         | CH+NP     |       | FINA              | ٩L    |
| Depth<br>(m)                                       | Sample /<br>Tests                            | Fie                          | eld Re | cords |       |          | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD               | Depth<br>(m)                     | Legend                                                      |                                                                                                                | Des                                 | cription           |                 |           | Water | Backfi            | 11    |
| 0.20 - 1.00<br>0.50<br>0.50                        | ES<br>ES6                                    |                              |        |       |       |          |                        | 55.85<br>55.05        | 0.20                       |                                  | TOPSOIL  MADE GROUND: Fit coarse. Gravel is su lithologies. | bangular to su                                                                                                 | brounded fine t                     | o coarse of        | mixed           |           |       | 0.5 -             |       |
| 1.00<br>1.00 - 2.00<br>1.20 - 1.65                 |                                              | N=5 (2,1/1,1,<br>0696        | ,1,2)  | Hamr  | mer S | N =      | 0.00                   | Dry                   |                            |                                  |                                                             | Soft brown slightly<br>Gravel is subangula<br>lithologies.                                                     |                                     |                    |                 | o coarse. |       |                   | 1.5 - |
| 2.00<br>2.00<br>2.00 - 2.50<br>2.50 - 3.20         | ES2<br>U8<br>B9<br>B10                       | Ublow=38 0%<br>Seepage at 2. |        | 1     |       |          | 0.00                   | Dry                   | 53.55                      | 2.50                             |                                                             | Stiff grey slightly sa<br>subangular to subro                                                                  | , . ,                               |                    |                 |           | _     |                   | 2.0 - |
| 3.00<br>3.00<br>3.00 - 3.45<br>3.20<br>3.20 - 4.00 | D11<br>ES3<br>SPT (S)<br>ES12<br>B12         | N=22 (3,3/5,6<br>0696        | 6,5,6  | ) Ham | nmer  | SN =     | 0.00                   | Dry                   | 52.85                      | 3.20                             |                                                             | Stiff light brown silt coarse. Gravel is su lithologies.                                                       |                                     |                    |                 |           |       |                   | 3.0 - |
| 4.00                                               | ES4                                          |                              |        |       |       |          |                        |                       | 52.05                      | 4.00                             |                                                             | Very stiff brown ver<br>(Driller's descriptio                                                                  |                                     | ly CLAY with hig   | gh cobble co    | ontent.   |       |                   | 4.0 - |
| 5.20<br>5.20                                       | C11<br>ES                                    |                              | 100    |       |       | NI       |                        |                       | 50.85<br>50.55             | 5.20<br>(0.30)<br>5.50           | * * * * * * * * * * * * * * * * * * *                       | Brown slightly silty<br>limestone. Sand is f<br>Firm brown sandy g<br>subangular fine to d                     | ine to coarse.<br>gravelly SILT. Sa | and is fine to coa |                 |           |       |                   | 5.5 - |
| 6.20<br>6.20                                       | C11                                          |                              |        |       |       | NI       |                        |                       | 49.85                      | 6.20                             | * * * * * * * * * * * * * * * * * * *                       | Brown and grey sar<br>mixed lithologies w<br>Cobbles are subang                                                | ith medium co                       | bble content. S    |                 |           |       |                   | 6.5   |
| 6.85                                               | С                                            |                              | 100    | 23    | 7     | NI<br>NI |                        |                       | 49.20<br>48.95             | 6.85<br>(0.25)<br>7.10<br>(0.50) | ****                                                        | Medium strong (loo<br>weathered: slightly<br>silty gravelly sand d<br>Discontinuities:<br>1. 0 to 10 degree bo | reduced stren<br>leposits.          | gth, closer fract  | ture spacing    | g with    |       |                   | 7.0 - |
| 7.60<br>7.70<br>7.80                               | С                                            |                              |        |       |       | 5        |                        |                       | 48.45                      | 7.60                             |                                                             | undulating, rough v<br>between fracture s<br>Brown silty gravelly<br>limestone.<br>Medium strong thin          | urfaces.<br>fine to coarse          | SAND. Gravel is    | subangula       | r of      |       |                   | 8.0 — |
| 8.50<br>8.85 - 9.05                                | С                                            |                              | 93     | 93    | 75    |          |                        |                       |                            |                                  |                                                             | unweathered: close<br>Discontinuities:<br>1. 0 to 10 degree be<br>planar and slightly                          | edding fracture                     | es, closely space  | ed (40/180/     | '280),    |       |                   | 8.5 - |
| 9.20                                               |                                              |                              |        |       |       |          |                        |                       | 47.00                      | 9.05                             |                                                             | Medium strong thin                                                                                             |                                     |                    | Partially wea   | athered:  |       |                   | 9.0   |
|                                                    | Water                                        | Strikes                      | iCR    | SCR   | RQD   | FI       | Chise                  | elling                | g Detail                   | s                                | Remarks                                                     |                                                                                                                |                                     |                    |                 |           |       |                   |       |
| Casing D                                           | Casing to (m<br>2.50<br>Details<br>Diam (mm) | ) Time (min)  Water          | Add    |       | m) F  |          |                        | To (                  |                            | ne (hh:mm)                       | Hand dug i<br>No ground                                     | nspection pit excavat<br>water encountered.<br>extended by dynami                                              |                                     |                    |                 |           |       |                   |       |
| 5.20                                               | 200                                          |                              |        |       |       |          | Barro<br>K6L           | el                    |                            |                                  |                                                             | on Reason I at scheduled depth.                                                                                |                                     |                    | <b>Last Upo</b> |           | W     | A                 | GS    |

| Method                                               | CAUS                 |                |     |     |          | Base                   | (m)                   | 20-0              | ct No.<br>399B     | Client:<br>Client's  | Rep: AECOM/                                                                                                                                                                                                   | Transport A                                                                               | Authority (N7                                             |                                                                                             |       | R6-CP07                                                                                                        |
|------------------------------------------------------|----------------------|----------------|-----|-----|----------|------------------------|-----------------------|-------------------|--------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------|
| Light Percussion<br>Rotary Drilling<br>Rotary Coring |                      | Terrie<br>n D8 |     | 0.0 | 00<br>00 | 4.0<br>5.2<br>10.7     | 00<br>10              | 70698             | 33.83 E<br>21.30 N | Final De<br>Elevatio |                                                                                                                                                                                                               |                                                                                           | 24/09/2020                                                | Driller: JC+KV  Logger: CH+N                                                                | /     | Scale: 1:50                                                                                                    |
| Depth (m) Sam                                        | ples / Field Records | TCR            | SCR | RQD | FI       | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD      | Depth<br>(m)       | Legend               |                                                                                                                                                                                                               | Desc                                                                                      | cription                                                  |                                                                                             | Water | Backfill                                                                                                       |
| 9.40 C 10.60 C 10.70                                 |                      | 100            | 100 | 0   | 10       |                        |                       | 45.35             | 10.70              |                      | Medium strong thir slightly reduced stressandy silt deposits. Discontinuities: 1. 0 to 10 degree be planar and undulati joint surfaces. 2. At 10.35m to 10.4 clean. 3. At 9.05m to 10.33 with localised grey. | ength, closer for<br>edding fracture<br>ing, smooth wi<br>45m: 25 to 75<br>5m: 80 to 90 d | es, closely space<br>ith grey sandy s<br>degree joint, un | with localised ge ed (30/150/390), ilt deposits on som indulating, smooth, dulating, smooth |       | 9.5 -                                                                                                          |
| Struck at (m) Casing to 2.50  Casing Details         |                      | Rose           |     |     |          |                        | elling<br>To (m       | Details<br>n) Tim | e (hh:mm)          | No groundy           | nspection pit excavate vater encountered. extended by dynamic                                                                                                                                                 | End of Borel                                                                              | hole at 10.70m                                            | rface at 9.20m to                                                                           |       | 11.0 —  11.5 —  12.0 —  12.5 —  13.0 —  14.5 —  14.5 —  15.0 —  16.5 —  17.0 —  17.5 —  18.0 —  18.5 —  18.5 — |
| To (m) Diam (r<br>5.20 200                           |                      | То             | (m) |     | Core     | Barre                  | el                    | Flush             | Туре               | Termination          | on Reason                                                                                                                                                                                                     |                                                                                           |                                                           | Last Updated                                                                                |       |                                                                                                                |
|                                                      |                      |                |     |     | SI       | K6L                    |                       | Polyr             | mer                | Terminated           | at scheduled depth.                                                                                                                                                                                           |                                                                                           |                                                           | 16/12/2020                                                                                  |       | AGS                                                                                                            |

| 200                    |                                 |             | Project Name:         |                       |           | Probe ID       |
|------------------------|---------------------------------|-------------|-----------------------|-----------------------|-----------|----------------|
|                        | CALISEWAY                       | 20-0399B    | Bus Connects Route    | 6 Lucan to City Centr | е         | R6-            |
| +                      | CAUSEWAY<br>GEOTECH             | Coordinates | Client:               |                       |           | CP07DP         |
|                        | GEOTECH                         | 706983.83 E | National Transport Au | uthority (NTA)        |           | CPU/DP         |
| Method:                |                                 |             | Client's Representa   | tive:                 |           | Sheet 1 of 1   |
| Dynamic Probing        | }                               | 735121.30 N | AECOM/Mott MacDo      |                       |           | Scale: 1:50    |
| Probe Type:            | <u> </u>                        | Elevation   | Final Depth:          | Date:                 | Operator: | 554.51 1.55    |
| DPSH-B                 |                                 | 56.05 mOD   | 6.20                  |                       | JC        | FINAL          |
|                        |                                 |             |                       |                       |           |                |
| Depth<br>(m)           |                                 |             | Blows/100mm           |                       |           | Torque<br>(Nm) |
| (111)                  | 10                              | 20          | 30                    | 40                    | )         | (MIII)         |
| _<br>_                 |                                 |             |                       |                       |           |                |
| <del>-</del><br>-      |                                 |             |                       |                       |           |                |
|                        |                                 |             |                       |                       |           |                |
| _<br>_                 |                                 |             |                       |                       |           |                |
| _ 1                    |                                 |             |                       |                       |           |                |
| -<br>-                 |                                 |             |                       |                       |           |                |
| <del>-</del>           |                                 |             |                       |                       |           |                |
| <del>-</del><br>-      |                                 |             |                       |                       |           |                |
| -<br>-<br>2            |                                 |             |                       |                       |           |                |
| <u> </u>               |                                 |             |                       |                       |           |                |
| _<br>_                 |                                 |             |                       |                       |           |                |
| <u> </u>               |                                 |             |                       |                       |           |                |
| <del>-</del><br>-      |                                 |             |                       |                       |           |                |
| _<br>_ 3               |                                 |             |                       |                       |           |                |
| =.                     |                                 |             |                       |                       |           |                |
| -<br>-<br>-            |                                 |             |                       |                       |           |                |
|                        |                                 |             |                       |                       |           |                |
| _<br>_                 |                                 |             |                       |                       |           |                |
| _ 4                    | 9 9                             |             |                       |                       |           |                |
| <del>-</del><br>-      | 11                              |             |                       |                       |           |                |
| _                      | 10<br>10<br>10                  |             |                       |                       |           |                |
| <del>-</del><br>-      | iŏ                              | 14          |                       |                       |           |                |
| _<br>_ 5               |                                 | 16          | 0                     |                       |           |                |
| _ J<br>-               | 101                             | 3 16        |                       |                       |           |                |
| <del>-</del><br>-      | 12                              | 14          |                       |                       |           |                |
| <br>_                  | 10 12                           |             |                       |                       |           |                |
| _<br>_                 | 10                              | 14          |                       |                       |           |                |
| <br>6                  | 11                              |             |                       | 30                    |           |                |
| _<br>_<br>=            |                                 |             |                       |                       |           | 50             |
| <u> </u>               |                                 |             |                       |                       |           |                |
| -<br>-                 |                                 |             |                       |                       |           |                |
| -<br>- <b>_,</b>       |                                 |             |                       |                       |           |                |
| _ 7                    |                                 |             |                       |                       |           | 1              |
| <del>-</del><br>-<br>- |                                 |             |                       |                       |           |                |
| <br>=                  |                                 |             |                       |                       |           |                |
| _<br>_                 |                                 |             |                       |                       |           |                |
| -<br>8                 |                                 |             |                       |                       |           |                |
| - <b>-</b><br>-        |                                 |             |                       |                       |           |                |
| _<br>_                 |                                 |             |                       |                       |           |                |
| <del></del><br>-<br>-  |                                 |             |                       |                       |           |                |
| _<br>_                 |                                 |             |                       |                       |           |                |
| 9                      |                                 |             |                       |                       |           |                |
| _<br>_                 |                                 |             |                       |                       |           |                |
| <del>-</del>           |                                 |             |                       |                       |           |                |
| _<br>_                 |                                 |             |                       |                       |           |                |
| _<br>_                 |                                 |             |                       |                       |           |                |
|                        |                                 | 1           |                       |                       |           |                |
| Fall Height:           | Remarks:                        | on          |                       |                       |           |                |
| 750 mm                 | Follow on from R6-CP07 WS Secti | OII.        |                       |                       |           |                |
| Hammer Mass:<br>64 kg  |                                 |             |                       |                       |           |                |
| Cone Diameter:         | -                               |             |                       |                       |           | 111 400        |
| 51 mm                  |                                 |             |                       |                       |           | <b>\</b> \\AGS |

|                               |                             | CAUSEW                                           |                     |                        |                       |                | ect No.<br>1399B                | Project N<br>Client:<br>Client's R |                                                                                                    |                | Authority (NT   |                         | e          |       | orehole                        |     |
|-------------------------------|-----------------------------|--------------------------------------------------|---------------------|------------------------|-----------------------|----------------|---------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------|----------------|-----------------|-------------------------|------------|-------|--------------------------------|-----|
| <b>Methoc</b><br>Cable Percus |                             | Plant Used<br>Dando 2000                         | <b>Top (m)</b> 0.00 | Base<br>4.2            | _                     | 70689          | 99.18 E<br>25.89 N              | Final Dept                         |                                                                                                    |                | 21/10/2020      | Driller:                |            |       | heet 1 o<br>Scale: 1:<br>FINAL | :40 |
| Depth<br>(m)                  | Sample /<br>Tests           | Field Records                                    | ;                   | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD   | Depth<br>(m)                    | Legend                             |                                                                                                    | Desc           | ription         |                         | ı          | Water | Backfill                       | Π   |
| I                             | B5<br>ES1                   |                                                  |                     |                        |                       | 51.90          | - 0.40                          | li<br>Li                           | MADE GROUND: So<br>coarse. Gravel i sub-<br>ithologies.<br>cose brown gravel<br>ine to medium of n | angular to sub | rounded fine to | coarse of r             | nixed      | -     |                                | 0.5 |
| 00<br>20                      | B6<br>ES2<br>D10<br>SPT (S) | N=16 (2,3/2,3,4,7) Han<br>0643                   | mmer SN =           | 0.00                   | Dry                   | 51.20          | 1.10                            |                                    | tiff brown sandy gr<br>ubangular to subro                                                          |                |                 |                         |            |       |                                | 1.0 |
| .00<br>.00                    | B7<br>ES3<br>ES7<br>U13     | Ublow=50 100%                                    |                     | 0.00                   | Dry                   | 50.30          | 2.00                            |                                    | itiff greyish brown s<br>s subangular to sub                                                       |                |                 |                         |            |       |                                | 2.0 |
| .00                           | B8<br>D11<br>ES4<br>SPT (S) | N=23 (4,5/5,5,6,7) Han<br>0643                   | mmer SN =           | 0.00                   | Dry                   |                | -                               |                                    |                                                                                                    |                |                 |                         |            |       |                                | 3.0 |
| .00                           | B9<br>D12<br>SPT (S)        | N=50 (40 for 125mm/5<br>25mm) Hammer SN = 0      |                     | 0.00                   | Dry                   | 48.30<br>48.10 | - 4.00<br>- 4.20                |                                    | Grey sandy silty sub<br>o coarse. (Possible                                                        | bedrock)       | e GRAVEL of lim | estone. Sar             | nd is fine |       |                                | 4.0 |
|                               |                             |                                                  |                     |                        |                       |                | -<br>-<br>-<br>-<br>-<br>-<br>- |                                    |                                                                                                    |                |                 |                         |            |       |                                | 5.0 |
|                               |                             |                                                  |                     |                        |                       |                | -<br>-<br>-<br>-<br>-<br>-<br>- |                                    |                                                                                                    |                |                 |                         |            |       |                                | 6.0 |
|                               |                             |                                                  |                     |                        |                       |                | -<br>-<br>-<br>-<br>-<br>-      |                                    |                                                                                                    |                |                 |                         |            |       |                                | 7.0 |
|                               |                             |                                                  |                     |                        |                       |                | -                               |                                    |                                                                                                    |                |                 |                         |            |       |                                |     |
| Casing De                     | ing to (m                   | r Strikes  i) Time (min) Rose to (r  Water Added | 4.00                | (m)                    | elling<br>To (I       |                | ne (hh:mm)<br>01:00             |                                    | pection pit excavate<br>ter encountered.                                                           | ed to 1.20m.   |                 |                         |            | ı     |                                |     |
| To (m) Di                     | <u>ameter</u>               | From (m) To (m)                                  |                     |                        |                       |                |                                 | <b>Termination</b> Terminated or   |                                                                                                    |                |                 | <b>Last Upd</b> 16/12/2 | lated 020  | W     | AC                             |     |

|                           | <u> </u>                | CAUSEW                                                              | ECH                 |                        |                       | -              | ect No.<br>0399B    | Project<br>Client:<br>Client's                         |                                                               |              | Authority (N     |                           |        | Borehol<br>R6-CP    |     |
|---------------------------|-------------------------|---------------------------------------------------------------------|---------------------|------------------------|-----------------------|----------------|---------------------|--------------------------------------------------------|---------------------------------------------------------------|--------------|------------------|---------------------------|--------|---------------------|-----|
| Method<br>Cable Percuss   | sion                    | Plant Used<br>Dando 2000                                            | <b>Top (m)</b> 0.00 | _                      | e (m)<br>10           |                | dinates<br>36.68 E  | Final De                                               | <b>pth:</b> 5.10 m                                            | Start Date:  | 23/10/2020       | <b>Driller:</b> BN        | М      | Sheet 1<br>Scale: 1 |     |
|                           |                         |                                                                     |                     |                        |                       | 735065.33 N    |                     | <b>Elevation:</b> 45.94 mOD <b>End Date:</b> 23/10/202 |                                                               |              |                  | Logger: CH                | 4      | FINA                | ١L  |
|                           | ample /<br>Tests        | Field Records                                                       | i                   | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Level<br>mOD   | Depth<br>(m)        | Legend                                                 | TOPSOIL                                                       | Desc         | cription         |                           |        | Backfil             |     |
| .50 E                     | 35<br>351               |                                                                     |                     |                        |                       | 45.64          | 0.30                |                                                        | MADE GROUND: So to coarse. Gravel is mixed lithologies.       |              |                  |                           |        |                     | 0.5 |
| .00 E.<br>.00 E.<br>.20 D |                         | N=2 (3,0/0,1,0,1) Ham<br>0696                                       | mer SN =            | 0.00                   | Dry                   | 44.74          | 1.20                |                                                        | MADE GROUND: Ve<br>fine to coarse. Grav<br>mixed lithologies. |              |                  |                           |        |                     | 1.5 |
| 00 D                      |                         | N=2 (0,1/0,1,0,1) Ham<br>0696                                       | mer SN =            | 0.00                   | Dry                   |                | -                   |                                                        |                                                               |              |                  |                           |        |                     | 2.0 |
| 00 E                      | 88<br>554<br>558<br>J15 | Ublow=15 80%                                                        |                     | 0.00                   | Dry                   | 42.94          | 3.00                |                                                        | Very soft brown sar<br>subangular to subro                    |              |                  |                           | vel is |                     | 3.0 |
| 00 D                      |                         | N=25 (4,4/5,6,7,7) Har<br>0696                                      | mmer SN =           | 0.00                   | Dry                   | 41.94          | - 4.00              |                                                        | Stiff brown sandy g<br>subangular to subro                    |              |                  |                           |        |                     | 4.0 |
| .00 D                     |                         | N=50 (34 for 125mm/5<br>21mm) Hammer SN =                           |                     | 0.00                   | Dry                   | 41.14<br>40.84 | 5.10                |                                                        | Grey sandy angular coarse. (Possible be                       | edrock)      | EL of limestone. | Sand is fine to           |        |                     | 5.0 |
|                           |                         |                                                                     |                     |                        |                       |                | -                   |                                                        |                                                               |              |                  |                           |        |                     | 6.5 |
| cuck at (m) Casin         | ng to (m                | Strikes   Time (min)   Rose to (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii | 4.9                 | (m)                    | To (                  |                | me (hh:mm)<br>01:00 |                                                        | nspection pit excavat<br>water encountered.                   | ed to 1.20m. |                  |                           | •      |                     | •   |
|                           |                         |                                                                     |                     |                        |                       |                |                     |                                                        | on Reason on refusal.                                         |              |                  | Last Update<br>16/12/2020 | ed     | \\A(                | GS  |

|                                                      |                              | CAUSEW                                                            |                     |                       |                           |              | ct No.<br>399B | Project<br>Client:<br>Client's |                                                                                             |               | Authority (N1                                 |                               |     |                                    | rehole   |                       |
|------------------------------------------------------|------------------------------|-------------------------------------------------------------------|---------------------|-----------------------|---------------------------|--------------|----------------|--------------------------------|---------------------------------------------------------------------------------------------|---------------|-----------------------------------------------|-------------------------------|-----|------------------------------------|----------|-----------------------|
| Metho<br>Cable Perc                                  |                              | Plant Used Dando 2000                                             | <b>Top (m)</b> 0.00 | 4.10                  | )                         | 70999        | 6.96 E         |                                | Final Depth: 4.10 m S  Elevation: 25.45 mOD E                                               |               | 24/10/2020                                    |                               |     | Sheet 1 of<br>Scale: 1:40<br>FINAL |          |                       |
| Depth<br>(m)                                         | Sample /<br>Tests            | Field Records                                                     | •                   | Casing V<br>Depth (m) |                           | Level<br>mOD | Depth<br>(m)   | Legend Description             |                                                                                             |               |                                               | <u> </u>                      |     | Water                              | Backfill |                       |
| .50<br>.50<br>.00<br>.00<br>.00                      | ES2  B4 ES ES5               |                                                                   |                     |                       |                           |              |                |                                | MADE GROUND: BI of limestone. Sand  MADE GROUND: Fit gravelly CLAY. Sand subrounded fine to | rm becoming s | se.<br>stiff brown sligh<br>se. Gravel is sub | tly sandy sligl<br>angular to |     |                                    |          | 1.0                   |
| 20<br>20 - 1.65<br>00<br>00<br>00<br>00<br>00 - 2.45 | B7<br>D6<br>ES8              | N=9 (6,4/2,2,2,3) Hami<br>0643<br>N=20 (4,4/5,4,5,6) Han<br>0643  |                     |                       |                           |              |                |                                |                                                                                             |               |                                               |                               |     |                                    |          | 2.0                   |
| 00<br>00<br>00<br>00 - 3.45                          | B10<br>D9<br>ES11<br>SPT (C) | N=39 (6,7/9,9,10,11) H<br>SN = 0643                               | lammer              | 1.50 [                | Dry                       | 2.45         | - 3.00<br>     |                                | MADE GROUND: Ve<br>coarse. Gravel is sul<br>lithologies.                                    |               |                                               |                               |     |                                    |          | 3.5                   |
| .00 - 4.08                                           | SPI (C)                      | N=50 (25 for 50mm/50<br>25mm) Hammer SN = 0                       |                     | 1.50 (                | iry 2                     | 1.35         | 4.10           |                                |                                                                                             | End of Bore   | ehole at 4.10m                                |                               |     |                                    |          | 5.5.5<br>5.5.6<br>6.6 |
| Casing D                                             | asing to (m                  | r Strikes  i) Time (min) Rose to (r  Water Added  From (m) To (m) | n) From 3.90        | m)                    | lling D<br>To (m)<br>4.10 | Tim          | e (hh:mm)      |                                | nspection pit excavat<br>water encountered.                                                 | ed to 1.20m.  |                                               |                               |     |                                    |          | 7.0                   |
|                                                      | _00                          |                                                                   |                     |                       |                           |              |                |                                | on Reason                                                                                   |               |                                               | <b>Last Upda</b><br>16/12/202 | ted |                                    | AC       |                       |

| Method                                                                                                                                                                                                | CAUSEW<br>GEOT                                                                                                                                  | AY<br>ECH                         | Page 1        | (m)                   | 20-0              | ect No.            | Project<br>Client:<br>Client's | National                                                                                                            | nects Route 6 Luc<br>Transport Author<br>'Mott MacDonald                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rity (NTA)                                                    | Centre                    |       | orehole                           | 1                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------|-----------------------|-------------------|--------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------|-------|-----------------------------------|-------------------------------------------------------|
| Cable Percussion                                                                                                                                                                                      | Dando 2000                                                                                                                                      | 0.00                              | 4.20          |                       | 71000             | 08.77 E<br>73.64 N | Final De                       | -                                                                                                                   | <b>Start Date:</b> 24/10 <b>End Date:</b> 24/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               | riller: BM<br>ogger: GH   |       | Sheet 1 of<br>Scale: 1:4<br>FINAL | 10                                                    |
| Depth Sample (m) Tests                                                                                                                                                                                | / Field Records                                                                                                                                 |                                   | Depth D       | Vater<br>Depth<br>(m) | Level<br>mOD      | Depth<br>(m)       | Legend                         |                                                                                                                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |                           | Water | Backfill                          |                                                       |
| (m) Tests  .50 B2 .50 ES1 .00 B5 .00 ES4 .20 D3 .20 ES3 .20 - 1.65 SPT (S)  .00 B8 .00 D6 .00 ES7 .00 - 2.45 SPT (S)  .00 B10 .00 D11 .00 ES11 .00 ES9 .00 - 3.45 SPT (S)  .00 B12 .00 - 4.12 SPT (S) | N=10 (4,3/2,3,2,3) Han<br>0643  N=21 (4,4/5,5,5,6) Han<br>0643  N=45 (7,8/10,10,12,13<br>SN = 0643  N=50 (41 for 100mm/5<br>25mm) Hammer SN = 0 | nmer SN =  ) Hammer  50 for  0643 | 1.50 [ 1.50 ] | Dry Dry Dry           | 24.83 24.03 22.13 | (m)<br>- 0.30      | Remarks                        | MADE GROUND: Fir gravelly CLAY. Sand subrounded fine to  Possible MADE GRC is fine to coarse. Gramixed lithologies. | ack sandy angular fine ine to coarse.  The becoming stiff brow is fine to coarse. Graw medium of mixed lith and the substitution of the substituti | e to coarse G<br>own slightly s<br>vel is subang<br>hologies. | andy slightly<br>ular to  | ,     | Backfill                          | 0.5 - 1.0 - 1.5 - 2.0 - 3.0 - 3.5 - 4.0 - 6.5 - 7.0 - |
| Casing Details To (m) Diameter 1.50 200                                                                                                                                                               | Water Added                                                                                                                                     | 4.10                              |               | 4.20                  |                   | 01:00              | No ground<br>Terminati         | on Reason  on refusal.                                                                                              | eu to 1.20m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                               | ast Updateo<br>16/12/2020 | 3     | \ <b>A</b> G                      | iS                                                    |

|                                                                                                | GEOT                                       | ECH      |               | 20-0           | ect No.<br>1399B   | Project<br>Client:<br>Client's |                                                |                                    | Authority (NT   |                            | ı           | Borehole ID                          |
|------------------------------------------------------------------------------------------------|--------------------------------------------|----------|---------------|----------------|--------------------|--------------------------------|------------------------------------------------|------------------------------------|-----------------|----------------------------|-------------|--------------------------------------|
| Method<br>Light Percussion                                                                     | Plant Used<br>Dando Terrier                | 0.00 Ba  | 1.40          | 70532          | 29.45 E<br>16.12 N | Final De                       |                                                |                                    | 24/09/2020      | Driller: JC  Logger: CH    |             | Sheet 1 of 1<br>Scale: 1:50<br>FINAL |
| Depth Sample /                                                                                 | Field Records                              | Ca<br>De | sing Water    | Level          | Depth              | Legend                         | 33.43 11100                                    |                                    | cription        | LOGGCI. CIT                | ater        |                                      |
| (m) Tests  1.20 D1  1.40 ES2  1.40 - 1.40 B2  1.50 ES4  1.00 ES5  1.20 D3  1.20 - 1.58 SPT (S) | N=50 (8,11/50 for 235)<br>Hammer SN = 0696 | D.       | puth my (m)   | 53.05<br>52.05 | 1.40               | Legend                         | TOPSOIL  Very dense brown v coarse GRAVEL of n | very sandy silt<br>nixed lithologi | y subangular to |                            | Water Water | Backfill                             |
|                                                                                                | Strikes   Time (min)   Rose to (r          |          | g Detail Diam | eter Ha        |                    | spection pit<br>ater encour    | excavated to 1.20m.                            |                                    |                 |                            |             | 1 7                                  |
|                                                                                                |                                            |          |               |                | rminatio           | n Reason                       |                                                |                                    |                 | Last Updated<br>16/12/2020 | W           | \AG\$                                |

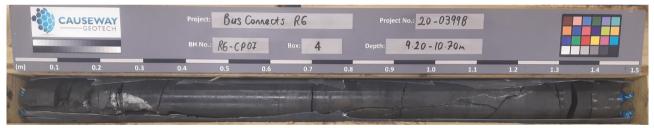
| Light Percussion   Dando Terrier   0.00   0.87   705693.37   Final Depth: 0.87 m   Start Date: 24/09/2020   Origine: JC   Scalie: 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |               | OTECH  | 1               |       | Project           | 399B      | Project<br>Client:<br>Client's |                    |                                   | Authority (NT                        |          | e    | F        | orehole   | 02    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------|--------|-----------------|-------|-------------------|-----------|--------------------------------|--------------------|-----------------------------------|--------------------------------------|----------|------|----------|-----------|-------|
| The state of the control of the cont | Method<br>Light Percussic           |               |        |                 | 87    | 70563             | 5.37 E    |                                |                    |                                   |                                      |          |      |          | Scale: 1: | 50    |
| Section   Sect   |                                     |               | ecords | Casing<br>Depth | Water | Level             | Depth     |                                | H. 64.42 IIIOD     | ļ                                 | 1                                    | Logger.  | СП   | ater     |           | -<br> |
| Nater Strikes  Casing Details  Remarks  Last Jordane In Control Contro | .30 ES1<br>.30 - 0.87 B1<br>.50 ES2 | 2             |        |                 | (m)   | 64.12             | 0.30      |                                | Very dense brown v | very sandy ver<br>VEL of mixed li | y silty subangula<br>thologies. Sand |          |      | <u> </u> |           | 0.5   |
| Termination Reason Last Updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | /ater Strikes |        |                 |       | er <sub>Han</sub> | d dug ins |                                |                    |                                   |                                      |          |      |          |           | 6.0   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |               |        |                 |       | Terr              | minatio   | ı Reason                       |                    |                                   |                                      | Last Upd | ated | I        |           |       |



## APPENDIX C CORE PHOTOGRAPHS






R6-CP07 Box 1 (5.20-6.20m)



R6-CP07 Box 2 (6.20-7.70m)



R6-CP07 Box 3 (7.70-9.20m)



R6-CP07 Box 4 (9.20-10.70m)





## APPENDIX D SLIT TRENCH LOGS AND SKETCHES



|                           |                        |                        | Proj           | ect No.      | Project  | : Name:                                                                                  |                    | 1       | rial Pit ID |
|---------------------------|------------------------|------------------------|----------------|--------------|----------|------------------------------------------------------------------------------------------|--------------------|---------|-------------|
| S A                       | CALIS                  | SEWAY                  | 20-            | 0399B        |          | nnects Route 6 Lucan to City Centre                                                      |                    |         |             |
|                           |                        | GEOTECH                | Coor           | dinates      | Client:  |                                                                                          |                    | ]       | R6-TP01     |
|                           |                        |                        | 7100           | 19.80 E      | 1        | al Transport Authority (NTA)                                                             |                    |         |             |
| Method:<br>Slit Trenching |                        |                        |                | 62.84 N      | 1        | s Representative:<br>//Mott MacDonald                                                    |                    |         | neet 1 of 1 |
| Plant:                    |                        |                        | Flo            | vation       | Date:    | I/INOLL INIACDONAID                                                                      | Logger:            | 5       | icale: 1:25 |
| 3t Tracked Exca           | avator                 |                        |                | 5 mOD        | 26/10/   | 2020                                                                                     | GH                 |         | FINAL       |
| Depth                     | Sample /               | Field Records          | Level          | Depth        | Legend   | Description                                                                              | 911                | Water   |             |
| (m)                       | Tests                  | rieid Records          | (mOD)          | (m)          | Legena   | CONCRETE                                                                                 |                    | Wa      |             |
|                           |                        |                        | 19.35<br>19.27 | 0.10         |          | MADE GROUND: Grey slightly sandy angular fine to                                         | coarse GRAVEL of   |         | -           |
|                           |                        |                        | 19.27          | 0.18         |          | \limestone. Sand is fine to coarse.<br>MADE GROUND: Dark grey slightly sandy angular fin | e to coarse GRAVEI | -1      |             |
|                           |                        |                        |                | -            |          | of limestone. Sand is fine to coarse.                                                    |                    |         |             |
| 0.50                      | B1                     |                        | 18.97          | 0.48         |          | MADE GROUND: Brown slightly sandy clayey angula                                          | r fine to coarse   |         | 0.5 —       |
|                           |                        | Slow seepage at 0.65m. |                | -            |          | GRAVEL of limestone. Sand is fine to coarse.                                             |                    | •       |             |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         |             |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         |             |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         | 1.0         |
|                           |                        |                        | 18.35          | 1.10         | ******   | End of trial pit at 1.10m                                                                |                    |         | -           |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         | <u> </u>    |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         |             |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         | 1.5 —       |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         | -           |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         | -           |
|                           |                        |                        |                |              |          |                                                                                          |                    |         |             |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         | 2.0         |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         | -           |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         | _           |
|                           |                        |                        |                |              |          |                                                                                          |                    |         |             |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         | 2.5         |
|                           |                        |                        |                |              |          |                                                                                          |                    |         | -           |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         | _           |
|                           |                        |                        |                | -<br>-       |          |                                                                                          |                    |         |             |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         | 3.0         |
|                           |                        |                        |                |              |          |                                                                                          |                    |         | -           |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         | -           |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         |             |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         | 3.5 —       |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         | -           |
|                           |                        |                        |                | <u> </u>     |          |                                                                                          |                    |         |             |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         |             |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         | 4.0         |
|                           |                        |                        |                | <u>-</u>     |          |                                                                                          |                    |         | -           |
|                           |                        |                        |                |              |          |                                                                                          |                    |         |             |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         | _           |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         | 4.5 —       |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         | -           |
|                           |                        |                        |                | -            |          |                                                                                          |                    |         |             |
|                           |                        |                        |                | <u>-</u>     |          |                                                                                          |                    |         |             |
|                           |                        |                        | $\vdash$       |              |          |                                                                                          |                    | $\perp$ |             |
|                           | Strikes                | <b>Depth:</b> 1.10     | Rem            |              |          | la ta ha datamain. U                                                                     |                    |         |             |
| Struck at (m)<br>0.65     | Remarks<br>Slow seepag |                        | Base           | or roundat   | ion unab | le to be determined to presences of services.                                            |                    |         |             |
| 0.05                      | 0.65m.                 | Length: 1.55           |                |              |          |                                                                                          |                    |         |             |
|                           |                        | Stability:             | Term           | nination Re  | ason:    |                                                                                          | Last Updated       |         |             |
|                           |                        | Stable                 | Term           | ninated at s | cheduled | depth.                                                                                   | 16/12/2020         |         | AGS         |

JOB NUMBER: JOB NAME: LOCATION: Bus Connects Lucan to City Centre 20-0399B R6 - TP01 CLIENT: CREW: PLANT & EQUIPMENT CLIENTS REPRESENTATIVE: National Transport authority (NTA) **AECOM** GH 3 Tonne Excavator & Hand Tools TRENCH: (SECTION & PLAN) Datum **TRENCH - ORIENTATION** 4 345° <sub>90°</sub>E 225 SW 180° Concrete S foundation TRENCH ORIENTATED: 345° FROM NORTH COORDINATES: DATUM WALL EASTING: 710019.80 NORTHING: 734262.84 ELEVATION: 19.45MDD 1550 Type of Service: Distance to Centre of Service (m) Diameter (in mm) Depth to Top TRENCH LENGTH (m): 1.55 **Details/Comments** No: of Service (m) TRENCH DEPTH (m): 1.10 01 100 0.56 0.21 <u>Jnknown</u> 100mm Black Duct Unknown 02 TRENCH WIDTH (m): 0.60 152 0.62 0.29 Unknown 152mm Yellow Duct Unknown 03 0.89 Unknown 100 0.57 <u> 100mm Black Duct Unknowr</u> STABILITY: STABLE 04 <u>Unknown</u> 100 0.73 0.76 100mm Black Duct Unknown 05 0.35 Unknown 100 1.05 - 1.16 2x100mm Black Duct Unknown GROUNDWATER: SLOW FLOW AT 0.65 06 07 SCALE: NTS@A3 80 09 DRAWN: BS 10 СН DATE EXCAVATED: 11 26-10-2020 12 13 14 15



## APPENDIX E SLIT TRENCH PHOTOGRAPHS





**R6-TP01** 






**R6-TP01** 



**R6-TP01** 





**R6-TP01** 





**R6-TP01** 





# APPENDIX F GEOTECHNICAL LABORATORY TEST RESULTS





## **HEAD OFFICE**

Registered in Northern Ireland. Company Number: NI610766

#### **REGIONAL OFFICE** Causeway Geotech (IRL) Ltd

Unit 3 Balbriggan Business Park, Balbriggan Co Dublin, Ireland, K32 EH36 ROI: +353 (0)1 526 7465

> Registered in Ireland. Company Number: 633786

www.causewaygeotech.com

#### **SOIL AND ROCK SAMPLE ANALYSIS** LABORATORY TEST REPORT

19 November 2020

| <b>Project Name:</b> | Bus Connects - Route 6 - Lucan to City Centre |
|----------------------|-----------------------------------------------|
| Project No.:         | 20-0399В                                      |
| Client:              | National Transport Authority (NTA)            |
| Engineer:            | AECOM/Mott MacDonald                          |

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the Contents page(s).

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Stephen Watson

**Laboratory Manager** 

Signed for and on behalf of Causeway Geotech Ltd















**Project Name:** Bus Connects - Route 6 - Lucan to City Centre

**Report Reference:** Schedule 1

The table below details the tests carried out, the specifications used, and the number of tests included in this report.

Tests marked with\* in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

| Material tested | Type of test/Properties<br>measured/Range of<br>measurement                                                     | Standard<br>specifications                                                                                | No. of results included in the report |
|-----------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------|
| SOIL            | Moisture Content of Soil                                                                                        | BS 1377-2: 1990: Cl 3.2                                                                                   | 37                                    |
| SOIL            | Liquid and Plastic Limits of soil-1 point cone penetrometer method                                              | BS 1377-2: 1990: Cl 4.4,<br>5.3 & 5.4                                                                     | 12                                    |
| SOIL            | Particle size distribution - wet sieving                                                                        | BS 1377-2: 1990: Cl 9.2                                                                                   | 14                                    |
| SOIL            | Particle size distribution - sedimentation hydrometer method                                                    | BS 1377-2: 1990: Cl 9.5                                                                                   | 11                                    |
| SOIL            | Moisture Condition Value at natural moisture content                                                            | BS 1377-4: 1990: Cl 5.4                                                                                   | 1                                     |
| SOIL            | Undrained shear strength – triaxial compression without measurement of pore pressure (loads from 0.12 to 24 kN) | BS 1377-7: 1990: Cl 8                                                                                     | 1                                     |
| ROCK            | Point load index                                                                                                | ISRM Commission on<br>Testing Methods.<br>Suggested Method for<br>Determining Point Load<br>Strength 1985 | 6                                     |
| ROCK            | Uniaxial Compressive Strength (UCS)*                                                                            | ISRM Suggested Methods -Rock Characterization Testing and Monitoring, Ed. E T Brown - 1981                | 1                                     |

### **SUB-CONTRACTED TESTS**

In agreement with Client, the following tests were conducted by an approved sub-contractor. All sub-contracting laboratories used are UKAS accredited.

| Material tested                                                 | Type of test/Properties<br>measured/Range of<br>measurement | Standard<br>specifications | No. of results included in the report |
|-----------------------------------------------------------------|-------------------------------------------------------------|----------------------------|---------------------------------------|
| SOIL – Subcontracted to<br>Eurofins Chemtest Ltd (UKAS<br>2183) | pH Value of Soil                                            |                            | 17                                    |
| SOIL – Subcontracted to<br>Eurofins Chemtest Ltd (UKAS<br>2183) | Sulphate Content water extract                              |                            | 17                                    |



Project No.

Project Name

20-0399B

Bus Connects Route 6 - Lucan to City Centre

|          |     | 0    | 1 -          |      | 1                                                  | I             |            |      |                  |         |    | T  |                     |                              |
|----------|-----|------|--------------|------|----------------------------------------------------|---------------|------------|------|------------------|---------|----|----|---------------------|------------------------------|
| Hole No. | Ref | Top  | nple<br>Base | Туре | Soil Description                                   | Densi<br>bulk | ity<br>dry | W    | Passing<br>425µm | LL      | PL |    | Particle<br>density | Casagrande<br>Classification |
|          |     |      |              | . ,  |                                                    | Mg/m          | 3          | %    | %                | %       | %  | %  | Mg/m3               |                              |
| R6-CP01  | 6   | 1.00 |              | В    | Brown slightly sandy silty CLAY.                   |               |            | 12.0 |                  |         |    |    |                     |                              |
| R6-CP01  | 7   | 2.00 |              | В    | Brown slightly sandy slightly gravelly silty CLAY. |               |            | 15.0 | 70               | 28 -1pt | 19 | 9  |                     | CL                           |
| R6-CP01  | 14  | 3.00 |              | U    | Brown slightly sandy silty CLAY.                   |               |            | 15.0 |                  |         |    |    |                     |                              |
| R6-CP01  | 12  | 4.00 |              | D    | Brown slightly sandy silty CLAY.                   |               |            | 16.0 |                  |         |    |    |                     |                              |
| R6-CP01  | 13  | 5.00 |              | D    | Brown slightly sandy silty CLAY.                   |               |            | 9.0  |                  |         |    |    |                     |                              |
| R6-CP02  | 2   | 0.70 |              | В    | Brown slightly sandy silty CLAY.                   |               |            | 24.0 |                  |         |    |    |                     |                              |
| R6-CP02  | 4   | 1.20 |              | В    | Brown sandy slightly gravelly silty CLAY.          |               |            | 17.0 | 83               | 37 -1pt | 21 | 16 |                     | CI                           |
| R6-CP03  | 12  | 1.20 |              | U    | Brown sandy gravelly silty CLAY.                   |               |            | 33.0 |                  |         |    |    |                     |                              |
| R6-CP03  | 7   | 2.00 |              | В    | Brown sandy gravelly silty CLAY.                   |               |            | 16.0 | 60               | 30 -1pt | 20 | 10 |                     | CL                           |
| R6-CP03  | 11  | 3.00 |              | D    | Brown sandy slightly gravelly silty CLAY.          |               |            | 15.0 |                  |         |    |    |                     |                              |
| R6-CP04  | 4   | 1.20 |              | В    | Brown sandy slightly gravelly silty CLAY.          |               |            | 15.0 |                  |         |    |    |                     |                              |
| R6-CP04  | 6   | 2.00 |              | U    | Brown sandy slightly gravelly silty CLAY.          |               |            | 14.0 |                  |         |    |    |                     |                              |
|          |     | -    |              |      |                                                    |               |            |      | -                |         |    |    | ا ۸۵                | 01P Version 4                |

All tests performed in accordance with BS1377:1990 unless specified otherwise

LAB 01R Version 4

Key

Density test Liquid Limit Particle density

Linear measurement unless : 4pt cone unless : sp - small pyknometer

1pt - single point test

wd - water displacement
wi - immersion in water

cas - Casagrande method

gj - gas jar

Date Printed

Approved By

19/11/2020



Stephen.Watson



Project No.

Project Name

20-0399B

Bus Connects Route 6 - Lucan to City Centre

| R6-CP04 | Ref<br>9 | Top 3.00 | Base | Туре | Soil Description                                   | Densi<br>bulk<br>Mg/m | dry | w<br>% | Passing<br>425µm<br>% | LL<br>% | PL<br>% |    | Particle density | Casagrande<br>Classification |
|---------|----------|----------|------|------|----------------------------------------------------|-----------------------|-----|--------|-----------------------|---------|---------|----|------------------|------------------------------|
| +       |          | 3.00     |      | В    |                                                    | Mg/m                  | 3   | %      |                       |         |         |    |                  |                              |
| R6-CP05 | 4        |          |      |      | Brown sandy slightly gravelly silty CLAY.          |                       |     | 17.0   | 70                    | 70      | 76      | %  | Mg/m3            |                              |
|         |          | 1.20     |      | D    | Brown sandy slightly gravelly silty CLAY.          |                       |     | 16.0   |                       |         |         |    |                  |                              |
| R6-CP05 | 5        | 2.00     |      | U    | Brown sandy gravelly silty CLAY.                   |                       |     | 14.0   |                       |         |         |    |                  |                              |
| R6-CP05 | 6        | 2.50     |      | D    | Brown sandy gravelly silty CLAY.                   |                       |     | 12.0   |                       |         |         |    |                  |                              |
| R6-CP05 | 7        | 2.60     |      | В    | Brown sandy gravelly silty CLAY.                   |                       |     | 9.6    | 47                    | 28 -1pt | 18      | 10 |                  | CL                           |
| R6-CP06 | 9        | 2.00     |      | U    | Brown sandy gravelly silty CLAY.                   |                       |     | 12.0   |                       |         |         |    |                  |                              |
| R6-CP07 | 5        | 0.20     |      | В    | Brown sandy slightly gravelly silty CLAY.          |                       |     | 18.0   | 72                    | 41 -1pt | 23      | 18 |                  | CI                           |
| R6-CP07 | 7        | 1.00     |      | В    | Brown sandy slightly gravelly silty CLAY.          |                       |     | 18.0   | 63                    | 40 -1pt | 25      | 15 |                  | MI/CI                        |
| R6-CP07 | 11       | 3.00     |      | D    | Brown sandy slightly gravelly silty CLAY.          |                       |     | 22.0   |                       |         |         |    |                  |                              |
| R6-CP07 | 11       | 5.20     |      | С    | Brown sandy gravelly silty CLAY.                   |                       |     | 13.0   | 48                    | 28 -1pt | 13      | 15 |                  | CL                           |
| R6-CP07 | 11       | 6.20     |      | С    | Brown sandy very gravelly silty CLAY with coobles. |                       |     | 8.5    |                       |         |         |    |                  |                              |
| R6-CP08 | 10       | 1.20     |      | D    | Brown sandy slightly gravelly silty CLAY.          |                       |     | 17.0   |                       |         |         |    |                  |                              |

All tests performed in accordance with BS1377:1990 unless specified otherwise

LAB 01R Version 4

Key

Density test Liquid Limit Particle density

Linear measurement unless : 4pt cone unless : sp - small pyknometer

1pt - single point test

wd - water displacement

wi - immersion in water

cas - Casagrande method

gj - gas jar

Date Printed

19/11/2020

Approved By

U KAS
TESTING
10122

Stephen.Watson



Project No.

Project Name

20-0399B

Bus Connects Route 6 - Lucan to City Centre

| Hole No.          |      |            | mple      |       | Soil Description                                  | Densit<br>bulk | ty<br>dry | W    | Passing<br>425µm | LL      | PL | PI | Particle density | Casagrande      |
|-------------------|------|------------|-----------|-------|---------------------------------------------------|----------------|-----------|------|------------------|---------|----|----|------------------|-----------------|
| 11010110.         | Ref  | Тор        | Base      | Туре  | Con Booonphon                                     | Mg/m3          | -         | %    | %                | %       | %  | %  | Mg/m3            | Classification  |
| R6-CP08           | 7    | 2.00       |           | В     | Brown sandy slightly gravelly silty CLAY.         |                |           | 16.0 | 59               | 29 -1pt | 19 | 10 |                  | CL              |
| R6-CP08           | 11   | 3.00       |           | D     | Brown sandy gravelly silty CLAY.                  |                |           | 17.0 |                  |         |    |    |                  |                 |
| R6-CP08           | 12   | 4.00       |           | D     | Greyish brown sandy very gravelly silty CLAY.     |                |           | 7.9  |                  |         |    |    |                  |                 |
| R6-CP09           | 11   | 1.20       |           | D     | Greyish brown sandy slightly gravelly silty CLAY. |                |           | 25.0 |                  |         |    |    |                  |                 |
| R6-CP09           | 12   | 2.00       |           | D     | Greyish brown sandy silty CLAY.                   |                |           | 26.0 |                  |         |    |    |                  |                 |
| R6-CP09           | 7    | 2.00       |           | В     | Greyish brown sandy silty CLAY.                   |                |           | 26.0 | 50               | 32 -1pt | 16 | 16 |                  | CL              |
| R6-CP09           | 15   | 3.00       |           | U     | Greyish brown sandy silty CLAY.                   |                |           | 27.0 |                  |         |    |    |                  |                 |
| R6-CP10           | 4    | 1.00       |           | В     | Greyish brown sandy gravelly silty<br>CLAY.       |                |           | 12.0 | 48               | 31 -1pt | 17 | 14 |                  | CL              |
| R6-CP10           | 6    | 2.00       |           | D     | Greyish brown sandy gravelly silty CLAY.          |                |           | 10.0 |                  |         |    |    |                  |                 |
| R6-CP10           | 10   | 3.00       |           | В     | Greyish brown sandy gravelly silty<br>CLAY.       |                |           | 12.0 | 50               | 28 -1pt | 17 | 11 |                  | CL              |
| R6-CP11           | 3    | 1.20       |           | D     | Greyish brown sandy slightly gravelly silty CLAY. |                |           | 15.0 |                  |         |    |    |                  |                 |
| R6-CP11           | 8    | 2.00       |           | В     | Greyish brown sandy slightly gravelly silty CLAY. |                |           | 14.0 | 60               | 30 -1pt | 15 | 15 |                  | CL              |
| All to ata manfan | mad: | n 0000 === | lanaa .:: | h DC4 | 277:1000 unloss specified                         | oth omuic c    |           |      |                  |         |    |    | ΙΔF              | 3 01R Version 4 |

All tests performed in accordance with BS1377:1990 unless specified otherwise

LAB 01R Version 4

Key

Density test Liquid Limit Particle density

Linear measurement unless : 4pt cone unless : sp - small pyknometer

1pt - single point test

wd - water displacement

wi - immersion in water

cas - Casagrande method

gj - gas jar

Date Printed

19/11/2020

UKAS
TESTING
10122

Stephen.Watson

Approved By



Project No. Project Name

20-0399B

Bus Connects Route 6 - Lucan to City Centre

| Hole No.         |                                                                                               |      | mple | I    | Soil Description                                  | Dens<br>bulk | ity<br>dry | W    | Passing<br>425µm | LL | PL | PI | Particle density | Casagrande<br>Classification |
|------------------|-----------------------------------------------------------------------------------------------|------|------|------|---------------------------------------------------|--------------|------------|------|------------------|----|----|----|------------------|------------------------------|
| Hole No.         | Ref                                                                                           | Тор  | Base | Туре | Soil Description                                  | Mg/m         |            | %    | %                | %  | %  | %  | Mg/m3            | Classification               |
| R6-CP11          | 11                                                                                            | 3.00 |      | D    | Greyish brown sandy slightly gravelly silty CLAY. |              |            | 11.0 |                  |    |    |    |                  |                              |
|                  |                                                                                               |      |      |      |                                                   |              |            |      |                  |    |    |    |                  |                              |
|                  |                                                                                               |      |      |      |                                                   |              |            |      |                  |    |    |    |                  |                              |
|                  |                                                                                               |      |      |      |                                                   |              |            |      |                  |    |    |    |                  |                              |
|                  |                                                                                               |      |      |      |                                                   |              |            |      |                  |    |    |    |                  |                              |
|                  |                                                                                               |      |      |      |                                                   |              |            |      |                  |    |    |    |                  |                              |
|                  |                                                                                               |      |      |      |                                                   |              |            |      |                  |    |    |    |                  |                              |
|                  |                                                                                               |      |      |      |                                                   |              |            |      |                  |    |    |    |                  |                              |
|                  |                                                                                               |      |      |      |                                                   |              |            |      |                  |    |    |    |                  |                              |
|                  |                                                                                               |      |      |      |                                                   |              |            |      |                  |    |    |    |                  |                              |
|                  |                                                                                               |      |      |      |                                                   |              |            |      |                  |    |    |    |                  | _                            |
|                  |                                                                                               |      |      |      |                                                   |              |            |      |                  |    |    |    |                  |                              |
| All tests perfor | I tests performed in accordance with BS1377:1990 unless specified otherwise LAB 01R Version 4 |      |      |      |                                                   |              |            |      |                  |    |    |    |                  |                              |

Key Density test Liquid Limit

Particle density

gj - gas jar

Approved By

Linear measurement unless:

wi - immersion in water

4pt cone unless: sp - small pyknometer

19/11/2020

Date Printed

wd - water displacement cas - Casagrande method

1pt - single point test

Stephen.Watson



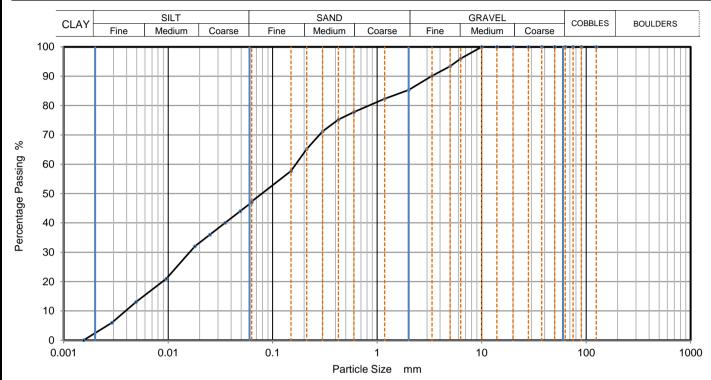
| CAUSEWAY           | DART                      | ICLE SIZE DIST           | TDIDLITION | Job Ref          | 20-0399В      |
|--------------------|---------------------------|--------------------------|------------|------------------|---------------|
| GEOTECH            | PARI                      | ICLE SIZE DIST           | IKIBOTION  | Borehole/Pit No. | R6-CP01       |
| Site Name          | Bus Connects Route 6      | 6 - Lucan to City Ce     | ntre       | Sample No.       | 7             |
| Soil Description   | Brown slightly sandy slig | ghtly gravelly silty CLA | AY.        | Depth, m         | 2.00          |
| Specimen Reference | 9                         | Specimen<br>Depth        | 2 n        | Sample Type      | В             |
| Test Method        | BS1377:Part 2:1990, cla   | uses 9.2 and 9.5         |            | KeyLAB ID        | Caus202010301 |



| Sieving          |           | Sedimentation    |           |  |
|------------------|-----------|------------------|-----------|--|
| Particle Size mm | % Passing | Particle Size mm | % Passing |  |
| 125              | 100       | 0.06300          | 32        |  |
| 90               | 100       | 0.05127          | 28        |  |
| 75               | 100       | 0.03668          | 25        |  |
| 63               | 100       | 0.02624          | 22        |  |
| 50               | 100       | 0.01866          | 20        |  |
| 37.5             | 100       | 0.00980          | 15        |  |
| 28               | 100       | 0.00495          | 12        |  |
| 20               | 100       | 0.00290          | 7         |  |
| 14               | 100       | 0.00155          | 2         |  |
| 10               | 99        |                  |           |  |
| 6.3              | 96        |                  |           |  |
| 5                | 95        |                  |           |  |
| 3.35             | 92        |                  |           |  |
| 2                | 87        |                  |           |  |
| 1.18             | 80        |                  |           |  |
| 0.6              | 68        | Particle density | (assumed) |  |
| 0.425            | 62        | 2.65             | Mg/m3     |  |
| 0.3              | 55        |                  |           |  |
| 0.212            | 47        |                  |           |  |
| 0.15             | 41        |                  |           |  |
| 0.063            | 32        |                  |           |  |

| Sample Proportions | % dry mass |  |  |
|--------------------|------------|--|--|
| Cobbles            | 0.0        |  |  |
| Gravel             | 13.2       |  |  |
| Sand               | 55.0       |  |  |
| Silt               | 28.1       |  |  |
| Clay               | 3.7        |  |  |

| Grading Analysis       |    |         |
|------------------------|----|---------|
| D100                   | mm |         |
| D60                    | mm | 0.392   |
| D30                    | mm | 0.0564  |
| D10                    | mm | 0.00413 |
| Uniformity Coefficient |    | 95      |
| Curvature Coefficient  |    | 2       |


Preparation and testing in accordance with BS1377-2:1990 unless noted below



Approved

Stephen.Watson

| CAUSEWAY           | PARTICLE SIZE DISTRIBUTION                |                                             |  | Job Ref     | 20-0399В         |         |
|--------------------|-------------------------------------------|---------------------------------------------|--|-------------|------------------|---------|
| GEOTECH            | PAR                                       | PARTICLE SIZE DISTRIBUTION                  |  |             | Borehole/Pit No. | R6-CP02 |
| Site Name          | Bus Connects Route                        | Bus Connects Route 6 - Lucan to City Centre |  |             | Sample No.       | 4       |
| Soil Description   | Brown sandy slightly gravelly silty CLAY. |                                             |  | Depth, m    | 1.20             |         |
| Specimen Reference | 9 Specimen 1.2 m                          |                                             |  | Sample Type | В                |         |
| Test Method        | BS1377:Part 2:1990, clauses 9.2 and 9.5   |                                             |  | KeyLAB ID   | Caus202010306    |         |

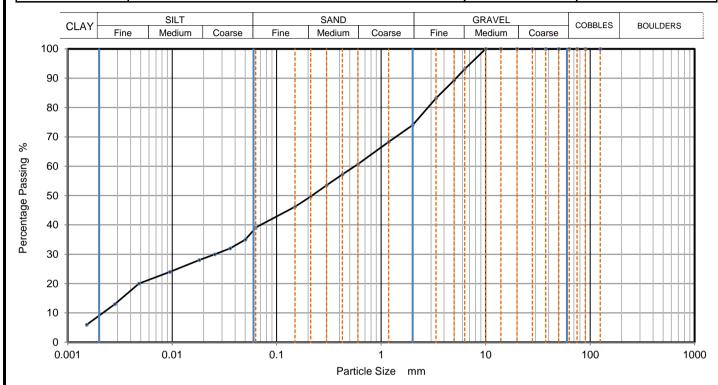


| Sieving          |           | Sedim            | Sedimentation |  |  |  |
|------------------|-----------|------------------|---------------|--|--|--|
| Particle Size mm | % Passing | Particle Size mm | % Passing     |  |  |  |
| 125              | 100       | 0.06300          | 47            |  |  |  |
| 90               | 100       | 0.04889          | 44            |  |  |  |
| 75               | 100       | 0.03502          | 40            |  |  |  |
| 63               | 100       | 0.02508          | 36            |  |  |  |
| 50               | 100       | 0.01795          | 32            |  |  |  |
| 37.5             | 100       | 0.00960          | 21            |  |  |  |
| 28               | 100       | 0.00491          | 13            |  |  |  |
| 20               | 100       | 0.00290          | 6             |  |  |  |
| 14               | 100       | 0.00155          | 0             |  |  |  |
| 10               | 100       |                  |               |  |  |  |
| 6.3              | 96        |                  |               |  |  |  |
| 5                | 93        |                  |               |  |  |  |
| 3.35             | 90        |                  |               |  |  |  |
| 2                | 85        |                  |               |  |  |  |
| 1.18             | 82        |                  |               |  |  |  |
| 0.6              | 78        | Particle density | (assumed)     |  |  |  |
| 0.425            | 75        | 2.65             | Mg/m3         |  |  |  |
| 0.3              | 71        |                  |               |  |  |  |
| 0.212            | 65        | 1                |               |  |  |  |
| 0.15             | 58        | 1                |               |  |  |  |
| 0.063            | 47        | 1                |               |  |  |  |

| Dry Mass of sample, g | 362 |
|-----------------------|-----|
|-----------------------|-----|

| Sample Proportions | % dry mass |  |  |
|--------------------|------------|--|--|
| Cobbles            | 0.0        |  |  |
| Gravel             | 14.7       |  |  |
| Sand               | 38.0       |  |  |
| Silt               | 45.0       |  |  |
| Clay               | 2.3        |  |  |

| Grading Analysis       |    |         |
|------------------------|----|---------|
| D100                   | mm |         |
| D60                    | mm | 0.167   |
| D30                    | mm | 0.0159  |
| D10                    | mm | 0.00392 |
| Uniformity Coefficient |    | 43      |
| Curvature Coefficient  |    | 0.39    |


Preparation and testing in accordance with BS1377-2:1990 unless noted below



Approved

Stephen.Watson

| CAUSEWAY           | PARTICLE SIZE DISTRIBUTION                  |                            |  | Job Ref     | 20-0399В         |         |
|--------------------|---------------------------------------------|----------------------------|--|-------------|------------------|---------|
| —— GEOTECH         | PANII                                       | PARTICLE SIZE DISTRIBUTION |  |             | Borehole/Pit No. | R6-CP03 |
| Site Name          | Bus Connects Route 6 - Lucan to City Centre |                            |  | Sample No.  | 7                |         |
| Soil Description   | Brown sandy gravelly silty CLAY.            |                            |  | Depth, m    | 2.00             |         |
| Specimen Reference | 9 Specimen 2 m<br>Depth                     |                            |  | Sample Type | В                |         |
| Test Method        | BS1377:Part 2:1990, clauses 9.2 and 9.5     |                            |  | KeyLAB ID   | Caus202010308    |         |

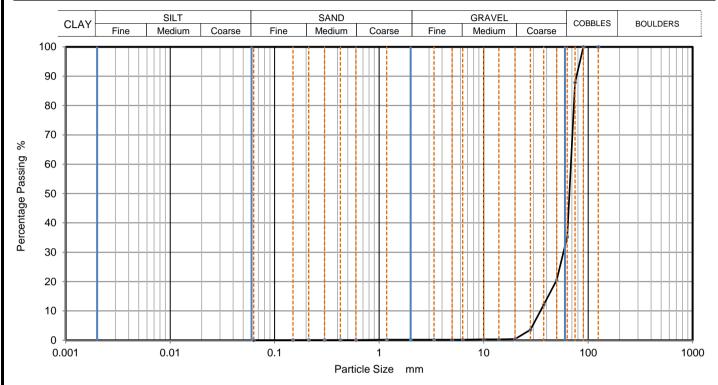


|                  |           | TT.              |           |  |
|------------------|-----------|------------------|-----------|--|
| Sieving          |           | Sedimentation    |           |  |
| Particle Size mm | % Passing | Particle Size mm | % Passing |  |
| 125              | 100       | 0.06300          | 39        |  |
| 90               | 100       | 0.05016          | 35        |  |
| 75               | 100       | 0.03591          | 32        |  |
| 63               | 100       | 0.02554          | 30        |  |
| 50               | 100       | 0.01817          | 28        |  |
| 37.5             | 100       | 0.00949          | 24        |  |
| 28               | 100       | 0.00480          | 20        |  |
| 20               | 100       | 0.00283          | 13        |  |
| 14               | 100       | 0.00152          | 6         |  |
| 10               | 100       |                  |           |  |
| 6.3              | 93        |                  |           |  |
| 5                | 89        |                  |           |  |
| 3.35             | 83        |                  |           |  |
| 2                | 74        |                  |           |  |
| 1.18             | 68        |                  |           |  |
| 0.6              | 61        | Particle density | (assumed) |  |
| 0.425            | 57        | 2.65             | Mg/m3     |  |
| 0.3              | 54        |                  |           |  |
| 0.212            | 50        |                  |           |  |
| 0.15             | 46        |                  |           |  |
| 0.063            | 39        |                  |           |  |

| 436 |
|-----|
|     |

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 0.0        |
| Gravel             | 26.0       |
| Sand               | 34.9       |
| Silt               | 30.3       |
| Clay               | 8.8        |

| Grading Analysis       |    |        |
|------------------------|----|--------|
| D100                   | mm |        |
| D60                    | mm | 0.558  |
| D30                    | mm | 0.0265 |
| D10                    | mm | 0.0022 |
| Uniformity Coefficient |    | 250    |
| Curvature Coefficient  |    | 0.57   |


Preparation and testing in accordance with BS1377-2:1990 unless noted below



Approved

Stephen.Watson

| CAUSEWAY           | PARTICLE SIZE DISTRIBUTION                                      |                                             | Job Ref | 20-0399В         |                |
|--------------------|-----------------------------------------------------------------|---------------------------------------------|---------|------------------|----------------|
| —— GEOTECH         | PANII                                                           | TICLE SIZE DISTRIBUTION                     |         | Borehole/Pit No. | R6-CP03        |
| Site Name          | Bus Connects Route 6                                            | Bus Connects Route 6 - Lucan to City Centre |         |                  | 9              |
| Soil Description   | Brown subangular medium coarse GRAVEL with high cobble content. |                                             |         | Depth, m         | 4.00           |
| Specimen Reference | 3 Specimen 4 m                                                  |                                             |         | Sample Type      | В              |
| Test Method        | d BS1377:Part 2:1990, clause 9.2                                |                                             |         | KeyLAB ID        | Caus2020103010 |

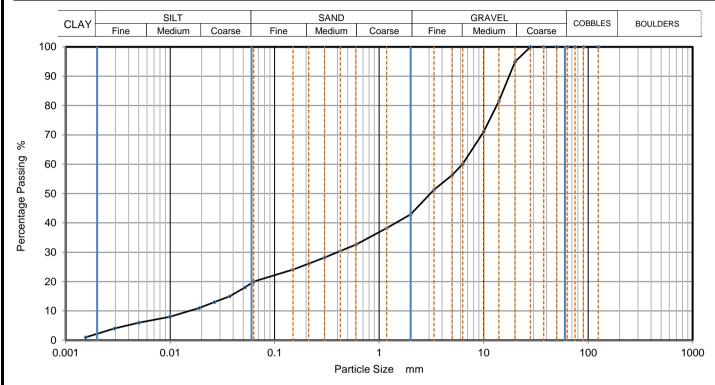


| Siev             | ving      | Sedime           | ntation   |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       |                  |           |
| 90               | 100       |                  |           |
| 75               | 88        |                  |           |
| 63               | 35        |                  |           |
| 50               | 21        |                  |           |
| 37.5             | 12        |                  |           |
| 28               | 4         |                  |           |
| 20               | 0         |                  |           |
| 14               | 0         |                  |           |
| 10               | 0         |                  |           |
| 6.3              | 0         |                  |           |
| 5                | 0         |                  |           |
| 3.35             | 0         |                  |           |
| 2                | 0         |                  |           |
| 1.18             | 0         |                  |           |
| 0.6              | 0         |                  |           |
| 0.425            | 0         | 1                |           |
| 0.3              | 0         |                  |           |
| 0.212            | 0         | 1                |           |
| 0.15             | 0         | 1                |           |
| 0.063            | 0         |                  |           |

| Dry Mass of sample, g | 4669 |
|-----------------------|------|
|-----------------------|------|

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 64.7       |
| Gravel             | 35.1       |
| Sand               | 0.2        |
|                    |            |
| Fines < 0.063mm    | 0.0        |

| Grading Analysis       |    |      |
|------------------------|----|------|
| D100                   | mm |      |
| D60                    | mm | 68.4 |
| D30                    | mm | 58   |
| D10                    | mm | 34.9 |
| Uniformity Coefficient |    | 2    |
| Curvature Coefficient  |    | 1.4  |


Preparation and testing in accordance with BS1377-2:1990 unless noted below



Approved

Stephen.Watson

| CAUSEWAY           | PARTICLE SIZE DISTRIBUTION -                   |                                             | Job Ref | 20-0399В         |                |   |
|--------------------|------------------------------------------------|---------------------------------------------|---------|------------------|----------------|---|
| —— GEOTECH         | PANI                                           | ARTICLE SIZE DISTRIBUTION                   |         | Borehole/Pit No. | R6-CP05        |   |
| Site Name          | Bus Connects Route 6                           | Bus Connects Route 6 - Lucan to City Centre |         |                  | Sample No.     | 7 |
| Soil Description   | Brown sandy gravelly silty CLAY.               |                                             |         | Depth, m         | 2.60           |   |
| Specimen Reference | 9 Specimen 2.6 m                               |                                             |         | Sample Type      | В              |   |
| Test Method        | Method BS1377:Part 2:1990, clauses 9.2 and 9.5 |                                             |         | KeyLAB ID        | Caus2020103017 |   |

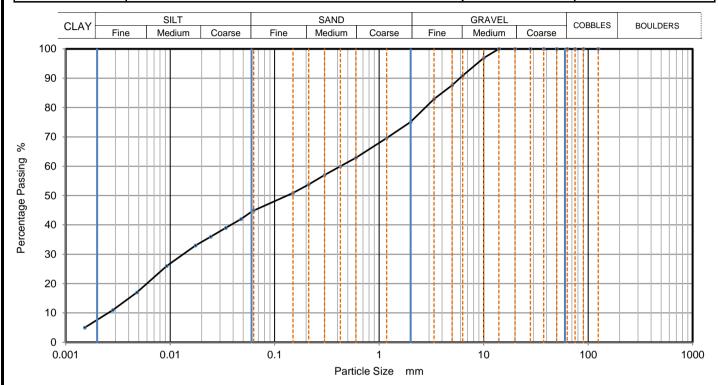


| Sieving          |           | Sedimentation    |           |  |
|------------------|-----------|------------------|-----------|--|
| Particle Size mm | % Passing | Particle Size mm | % Passing |  |
| 125              | 100       | 0.06300          | 20        |  |
| 90               | 100       | 0.05188          | 18        |  |
| 75               | 100       | 0.03711          | 15        |  |
| 63               | 100       | 0.02654          | 13        |  |
| 50               | 100       | 0.01897          | 11        |  |
| 37.5             | 100       | 0.00990          | 8         |  |
| 28               | 100       | 0.00501          | 6         |  |
| 20               | 95        | 0.00292          | 4         |  |
| 14               | 82        | 0.00155          | 1         |  |
| 10               | 71        |                  |           |  |
| 6.3              | 60        |                  |           |  |
| 5                | 56        |                  |           |  |
| 3.35             | 51        |                  |           |  |
| 2                | 43        |                  |           |  |
| 1.18             | 38        |                  |           |  |
| 0.6              | 33        | Particle density | (assumed) |  |
| 0.425            | 30        | 2.65             | Mg/m3     |  |
| 0.3              | 28        |                  |           |  |
| 0.212            | 26        |                  |           |  |
| 0.15             | 24        |                  |           |  |
| 0.063            | 20        |                  |           |  |

| Dry Mass of sample, g | 2250 |
|-----------------------|------|
|-----------------------|------|

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 0.0        |
| Gravel             | 57.1       |
| Sand               | 23.0       |
| Silt               | 17.8       |
| Clay               | 2.1        |

| Grading Analysis       |    |        |
|------------------------|----|--------|
| D100                   | mm |        |
| D60                    | mm | 6.25   |
| D30                    | mm | 0.398  |
| D10                    | mm | 0.0161 |
| Uniformity Coefficient |    | 390    |
| Curvature Coefficient  |    | 1.6    |


Preparation and testing in accordance with BS1377-2:1990 unless noted below



Approved

Stephen.Watson

| CAUSEWAY           | CALISEWAY DARTICLE SIZE DISTRIBUTION |                                             |  | Job Ref  | 20-0399В         |                |
|--------------------|--------------------------------------|---------------------------------------------|--|----------|------------------|----------------|
| GEOTECH            | PARII                                | PARTICLE SIZE DISTRIBUTION -                |  |          | Borehole/Pit No. | R6-CP07        |
| Site Name          | Bus Connects Route 6                 | Bus Connects Route 6 - Lucan to City Centre |  |          | Sample No.       | 9              |
| Soil Description   | Brown sandy gravelly silty CLAY.     |                                             |  | Depth, m | 2.00             |                |
| Specimen Reference | 3                                    | Specimen 2 m Depth                          |  |          | Sample Type      | В              |
| Test Method        | BS1377:Part 2:1990, clau             | ses 9.2 and 9.5                             |  |          | KeyLAB ID        | Caus2020103021 |

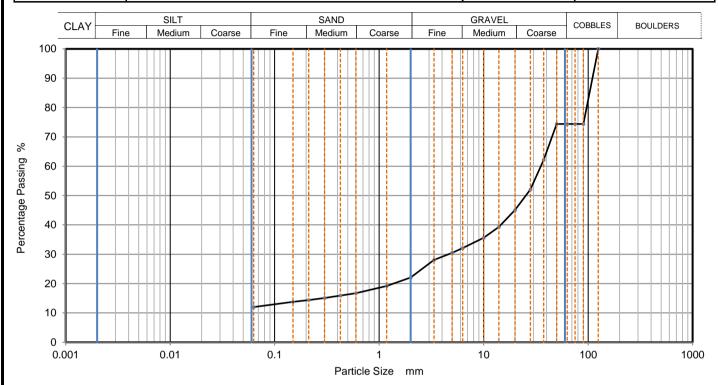


| Sie              | ving      | Sedime           | entation  |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       | 0.06300          | 45        |
| 90               | 100       | 0.04758          | 42        |
| 75               | 100       | 0.03411          | 39        |
| 63               | 100       | 0.02444          | 36        |
| 50               | 100       | 0.01751          | 33        |
| 37.5             | 100       | 0.00927          | 26        |
| 28               | 100       | 0.00480          | 17        |
| 20               | 100       | 0.00283          | 11        |
| 14               | 100       | 0.00152          | 5         |
| 10               | 97        |                  |           |
| 6.3              | 91        |                  |           |
| 5                | 88        |                  |           |
| 3.35             | 83        |                  |           |
| 2                | 75        |                  |           |
| 1.18             | 70        |                  |           |
| 0.6              | 63        | Particle density | (assumed) |
| 0.425            | 60        | 2.65             | Mg/m3     |
| 0.3              | 57        |                  |           |
| 0.212            | 54        |                  |           |
| 0.15             | 51        |                  |           |
| 0.063            | 45        |                  |           |

| Dry Mass of sample, g 537 | Dry Mass of sample, g | 537 |
|---------------------------|-----------------------|-----|
|---------------------------|-----------------------|-----|

| Sample Proportions | % dry mass |  |  |
|--------------------|------------|--|--|
| Cobbles            | 0.0        |  |  |
| Gravel             | 24.9       |  |  |
| Sand               | 30.2       |  |  |
| Silt               | 37.5       |  |  |
| Clay               | 7.4        |  |  |

| Grading Analysis       |    |         |
|------------------------|----|---------|
| D100                   | mm |         |
| D60                    | mm | 0.425   |
| D30                    | mm | 0.0135  |
| D10                    | mm | 0.00261 |
| Uniformity Coefficient |    | 160     |
| Curvature Coefficient  |    | 0.16    |


Preparation and testing in accordance with BS1377-2:1990 unless noted below



Approved

Stephen.Watson

| CAUSEWAY PARTICLE SIZE DISTRIBUTION |                                                    |                                             | Job Ref | 20-0399В |                  |                |
|-------------------------------------|----------------------------------------------------|---------------------------------------------|---------|----------|------------------|----------------|
| —— GEOTECH                          | PANII                                              | PARTICLE SIZE DISTRIBUTION                  |         |          | Borehole/Pit No. | R6-CP07        |
| Site Name                           | Bus Connects Route 6                               | Bus Connects Route 6 - Lucan to City Centre |         |          | Sample No.       | 11             |
| Soil Description                    | Brown sandy very gravelly silty CLAY with coobles. |                                             |         | Depth, m | 6.20             |                |
| Specimen Reference                  | 8                                                  | 8 Specimen 6.2 m                            |         |          | Sample Type      | С              |
| Test Method                         | BS1377:Part 2:1990, clau                           | se 9.2                                      |         | ·        | KeyLAB ID        | Caus2020103024 |

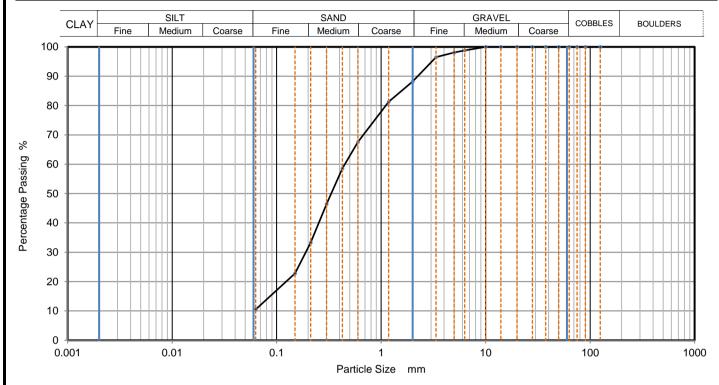


| Siev             | /ing      | Sedime           | ntation   |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       |                  |           |
| 90               | 74        |                  |           |
| 75               | 74        |                  |           |
| 63               | 74        |                  |           |
| 50               | 74        |                  |           |
| 37.5             | 62        |                  |           |
| 28               | 52        |                  |           |
| 20               | 45        |                  |           |
| 14               | 39        |                  |           |
| 10               | 36        |                  |           |
| 6.3              | 32        |                  |           |
| 5                | 31        |                  |           |
| 3.35             | 28        |                  |           |
| 2                | 22        |                  |           |
| 1.18             | 19        |                  |           |
| 0.6              | 17        |                  |           |
| 0.425            | 16        | 1                |           |
| 0.3              | 15        |                  |           |
| 0.212            | 14        |                  |           |
| 0.15             | 14        |                  |           |
| 0.063            | 12        |                  |           |

| Dry Mass of sample, g | 9944 |
|-----------------------|------|
| , , , ,               |      |

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 25.6       |
| Gravel             | 52.4       |
| Sand               | 10.1       |
|                    |            |
| Fines < 0.063mm    | 12.0       |

| Grading Analysis       |    |      |
|------------------------|----|------|
| D100                   | mm | 125  |
| D60                    | mm | 35.2 |
| D30                    | mm | 4.59 |
| D10                    | mm |      |
| Uniformity Coefficient |    |      |
| Curvature Coefficient  |    |      |


Preparation and testing in accordance with BS1377-2:1990 unless noted below



Approved

Stephen.Watson

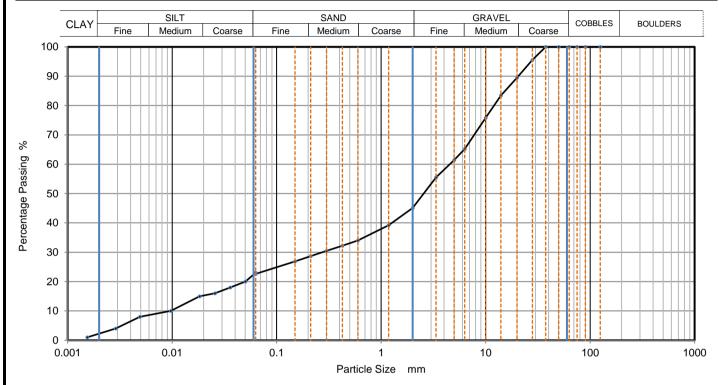
| CAUSEWAY PARTICLE SIZE DISTRIBUTION |                                                    |                                             | Job Ref | 20-0399В         |            |                |
|-------------------------------------|----------------------------------------------------|---------------------------------------------|---------|------------------|------------|----------------|
| —— GEOTECH                          | GEOTECH PARTICLE SIZE DISTRIBUTION                 |                                             |         | Borehole/Pit No. | R6-CP08    |                |
| Site Name                           | Bus Connects Route 6                               | Bus Connects Route 6 - Lucan to City Centre |         |                  | Sample No. | 5              |
| Soil Description                    | Brown slightly gravelly silty fine to coarse SAND. |                                             |         | Depth, m         | 0.50       |                |
| Specimen Reference                  | 3 Specimen 0.5 m                                   |                                             |         | Sample Type      | В          |                |
| Test Method                         | BS1377:Part 2:1990, clau                           | 3S1377:Part 2:1990, clause 9.2              |         |                  | KeyLAB ID  | Caus2020103025 |



| Siev             | ving      | Sedime           | ntation   |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       |                  |           |
| 90               | 100       |                  |           |
| 75               | 100       |                  |           |
| 63               | 100       |                  |           |
| 50               | 100       |                  |           |
| 37.5             | 100       |                  |           |
| 28               | 100       |                  |           |
| 20               | 100       |                  |           |
| 14               | 100       |                  |           |
| 10               | 100       |                  |           |
| 6.3              | 99        |                  |           |
| 5                | 98        |                  |           |
| 3.35             | 97        |                  |           |
| 2                | 88        |                  |           |
| 1.18             | 81        |                  |           |
| 0.6              | 68        |                  |           |
| 0.425            | 59        | 1                |           |
| 0.3              | 46        |                  |           |
| 0.212            | 33        | ]                |           |
| 0.15             | 23        | ]                |           |
| 0.063            | 11        |                  |           |

| Dry Mass of sample, g | 358 |
|-----------------------|-----|
|                       |     |

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 0.0        |
| Gravel             | 11.8       |
| Sand               | 77.7       |
|                    |            |
| Fines < 0.063 mm   | 11.0       |


| Grading Analysis       |    |       |
|------------------------|----|-------|
| D100                   | mm |       |
| D60                    | mm | 0.448 |
| D30                    | mm | 0.19  |
| D10                    | mm |       |
| Uniformity Coefficient |    |       |
| Curvature Coefficient  |    |       |

Preparation and testing in accordance with BS1377-2:1990 unless noted below



| Approved       |  |
|----------------|--|
| Stephen.Watson |  |

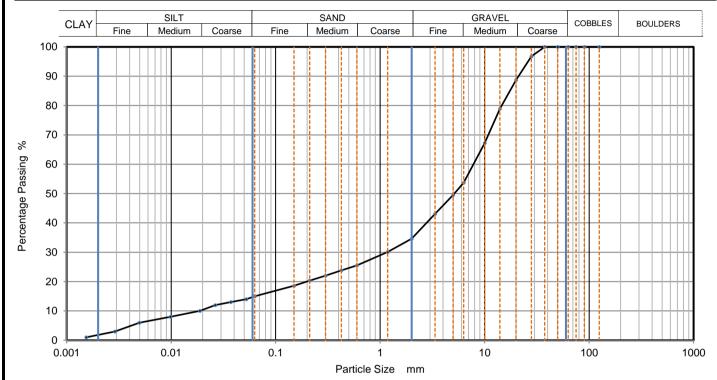
| CAUSEWAY           | PARTICLE SIZE DISTRIBUTION                |                                             | Job Ref     | 20-0399B         |                |   |
|--------------------|-------------------------------------------|---------------------------------------------|-------------|------------------|----------------|---|
| GEOTECH            | PARTICLE SIZE DISTRIBUTION                |                                             |             | Borehole/Pit No. | R6-CP08        |   |
| Site Name          | Bus Connects Route 6                      | Bus Connects Route 6 - Lucan to City Centre |             |                  | Sample No.     | 8 |
| Soil Description   | Brown sandy slightly gravelly silty CLAY. |                                             |             | Depth, m         | 3.00           |   |
| Specimen Reference | Specimen 3 m Depth                        |                                             | Sample Type | В                |                |   |
| Test Method        | 3S1377:Part 2:1990, clauses 9.2 and 9.5   |                                             |             | KeyLAB ID        | Caus2020103029 |   |



| Sieving          |           | Sedim            | entation  |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       | 0.06300          | 23        |
| 90               | 100       | 0.05016          | 20        |
| 75               | 100       | 0.03591          | 18        |
| 63               | 100       | 0.02570          | 16        |
| 50               | 100       | 0.01828          | 15        |
| 37.5             | 100       | 0.00971          | 10        |
| 28               | 96        | 0.00491          | 8         |
| 20               | 90        | 0.00288          | 4         |
| 14               | 83        | 0.00154          | 1         |
| 10               | 76        |                  |           |
| 6.3              | 65        |                  |           |
| 5                | 61        |                  |           |
| 3.35             | 56        |                  |           |
| 2                | 45        |                  |           |
| 1.18             | 39        |                  |           |
| 0.6              | 34        | Particle density | (assumed) |
| 0.425            | 32        | 2.65             | Mg/m3     |
| 0.3              | 31        |                  |           |
| 0.212            | 29        | 7                |           |
| 0.15             | 27        | 7                |           |
| 0.063            | 23        | 7                |           |

| Dry Mass of sample, g | 2219 |
|-----------------------|------|
|                       |      |

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 0.0        |
| Gravel             | 54.9       |
| Sand               | 22.5       |
| Silt               | 20.2       |
| Clay               | 2.4        |


| Grading Analysis       |    |        |
|------------------------|----|--------|
| D100                   | mm |        |
| D60                    | mm | 4.56   |
| D30                    | mm | 0.271  |
| D10                    | mm | 0.0101 |
| Uniformity Coefficient |    | 450    |
| Curvature Coefficient  |    | 1.6    |

Preparation and testing in accordance with BS1377-2:1990 unless noted below



Approved Stephen.Watson

| CAUSEWAY           | PARTICLE SIZE DISTRIBUTION -                  |  |  | Job Ref          | 20-0399В       |
|--------------------|-----------------------------------------------|--|--|------------------|----------------|
| —— GEOTECH         |                                               |  |  | Borehole/Pit No. | R6-CP08        |
| Site Name          | Bus Connects Route 6 - Lucan to City Centre   |  |  | Sample No.       | 9              |
| Soil Description   | Greyish brown sandy very gravelly silty CLAY. |  |  | Depth, m         | 4.00           |
| Specimen Reference | Specimen 4 m Depth                            |  |  | Sample Type      | В              |
| Test Method        | 3S1377:Part 2:1990, clauses 9.2 and 9.5       |  |  | KeyLAB ID        | Caus2020103032 |

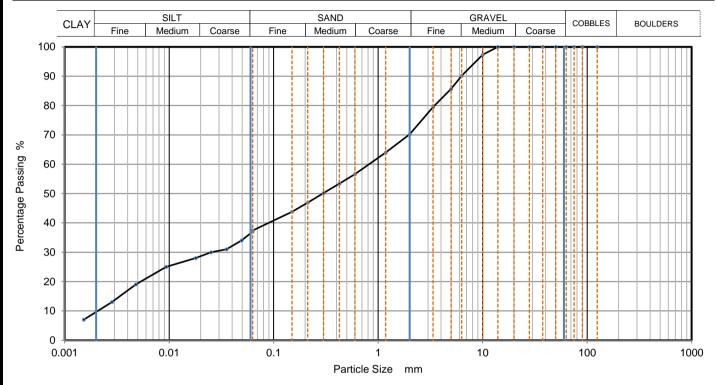


| Sieving          |           | Sedimentation    |           |  |
|------------------|-----------|------------------|-----------|--|
| Particle Size mm | % Passing | Particle Size mm | % Passing |  |
| 125              | 100       | 0.06300          | 15        |  |
| 90               | 100       | 0.05231          | 14        |  |
| 75               | 100       | 0.03720          | 13        |  |
| 63               | 100       | 0.02645          | 12        |  |
| 50               | 100       | 0.01881          | 10        |  |
| 37.5             | 100       | 0.00982          | 8         |  |
| 28               | 97        | 0.00496          | 6         |  |
| 20               | 89        | 0.00290          | 3         |  |
| 14               | 79        | 0.00154          | 1         |  |
| 10               | 67        |                  |           |  |
| 6.3              | 54        |                  |           |  |
| 5                | 50        |                  |           |  |
| 3.35             | 43        |                  |           |  |
| 2                | 35        |                  |           |  |
| 1.18             | 30        |                  |           |  |
| 0.6              | 26        | Particle density | (assumed) |  |
| 0.425            | 24        | 2.65             | Mg/m3     |  |
| 0.3              | 22        |                  |           |  |
| 0.212            | 20        |                  |           |  |
| 0.15             | 19        |                  |           |  |
| 0.063            | 15        |                  |           |  |

| Dry Mass of sample, g | 2545 |
|-----------------------|------|
|-----------------------|------|

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 0.0        |
| Gravel             | 65.4       |
| Sand               | 19.6       |
| Silt               | 12.9       |
| Clay               | 2.1        |

| Grading Analysis       |    |        |
|------------------------|----|--------|
| D100                   | mm |        |
| D60                    | mm | 7.82   |
| D30                    | mm | 1.16   |
| D10                    | mm | 0.0169 |
| Uniformity Coefficient |    | 460    |
| Curvature Coefficient  |    | 10     |


Preparation and testing in accordance with BS1377-2:1990 unless noted below



Approved

Stephen.Watson

| CAUSEWAY           | DART                                     | PARTICLE SIZE DISTRIBUTION -                |  | Job Ref          | 20-0399B       |   |
|--------------------|------------------------------------------|---------------------------------------------|--|------------------|----------------|---|
| GEOTECH            | PARI                                     |                                             |  | Borehole/Pit No. | R6-CP10        |   |
| Site Name          | Bus Connects Route 6                     | Bus Connects Route 6 - Lucan to City Centre |  |                  | Sample No.     | 4 |
| Soil Description   | Greyish brown sandy gravelly silty CLAY. |                                             |  | Depth, m         | 1.00           |   |
| Specimen Reference | 9 Specimen 1 m                           |                                             |  | Sample Type      | В              |   |
| Test Method        | BS1377:Part 2:1990, clauses 9.2 and 9.5  |                                             |  | KeyLAB ID        | Caus2020103037 |   |

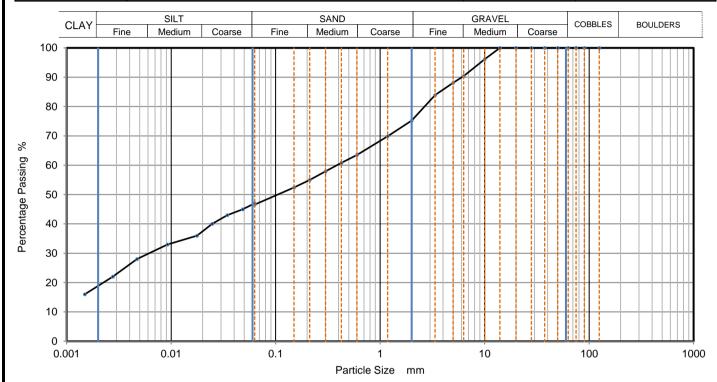


| Sieving          |           | Sedimentation    |           |  |
|------------------|-----------|------------------|-----------|--|
| Particle Size mm | % Passing | Particle Size mm | % Passing |  |
| 125              | 100       | 0.06300          | 37        |  |
| 90               | 100       | 0.04939          | 34        |  |
| 75               | 100       | 0.03537          | 31        |  |
| 63               | 100       | 0.02517          | 30        |  |
| 50               | 100       | 0.01791          | 28        |  |
| 37.5             | 100       | 0.00936          | 25        |  |
| 28               | 100       | 0.00479          | 19        |  |
| 20               | 100       | 0.00283          | 13        |  |
| 14               | 100       | 0.00152          | 7         |  |
| 10               | 97        |                  |           |  |
| 6.3              | 90        |                  |           |  |
| 5                | 86        |                  |           |  |
| 3.35             | 80        |                  |           |  |
| 2                | 70        |                  |           |  |
| 1.18             | 64        |                  |           |  |
| 0.6              | 57        | Particle density | (assumed) |  |
| 0.425            | 53        | 2.65             | Mg/m3     |  |
| 0.3              | 50        |                  |           |  |
| 0.212            | 47        |                  |           |  |
| 0.15             | 44        |                  |           |  |
| 0.063            | 37        |                  |           |  |

| Dry Mass of sample, g | 508 |
|-----------------------|-----|
|                       |     |

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 0.0        |
| Gravel             | 29.8       |
| Sand               | 32.7       |
| Silt               | 27.4       |
| Clay               | 10.1       |

| Grading Analysis       |    |         |
|------------------------|----|---------|
| D100                   | mm |         |
| D60                    | mm | 0.817   |
| D30                    | mm | 0.0256  |
| D10                    | mm | 0.00197 |
| Uniformity Coefficient |    | 410     |
| Curvature Coefficient  |    | 0.41    |


Preparation and testing in accordance with BS1377-2:1990 unless noted below



Approved

Stephen.Watson

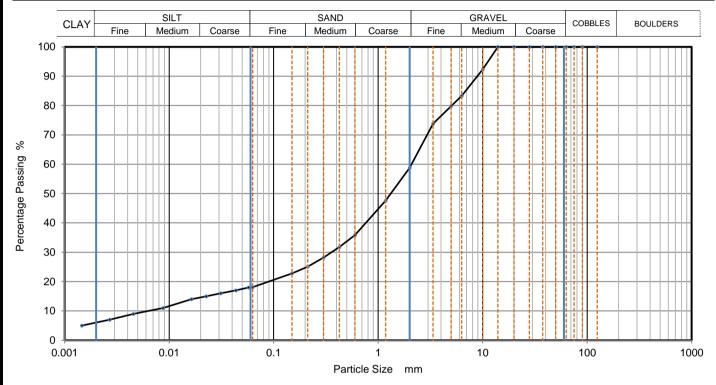
| CAUSEWAY           | DART                                              | PARTICLE SIZE DISTRIBUTION -                |  | Job Ref          | 20-0399B       |   |
|--------------------|---------------------------------------------------|---------------------------------------------|--|------------------|----------------|---|
| —— GEOTECH         | PANI                                              |                                             |  | Borehole/Pit No. | R6-CP11        |   |
| Site Name          | Bus Connects Route 6                              | Bus Connects Route 6 - Lucan to City Centre |  |                  | Sample No.     | 8 |
| Soil Description   | Greyish brown sandy slightly gravelly silty CLAY. |                                             |  | Depth, m         | 2.00           |   |
| Specimen Reference | 9 Specimen 2 m<br>Depth                           |                                             |  | Sample Type      | В              |   |
| Test Method        | BS1377:Part 2:1990, clauses 9.2 and 9.5           |                                             |  | KeyLAB ID        | Caus2020103041 |   |



| Sieving          |           | Sedimentation    |           |  |
|------------------|-----------|------------------|-----------|--|
| Particle Size mm | % Passing | Particle Size mm | % Passing |  |
| 125              | 100       | 0.06300          | 47        |  |
| 90               | 100       | 0.04843          | 45        |  |
| 75               | 100       | 0.03447          | 43        |  |
| 63               | 100       | 0.02470          | 40        |  |
| 50               | 100       | 0.01769          | 36        |  |
| 37.5             | 100       | 0.00925          | 33        |  |
| 28               | 100       | 0.00471          | 28        |  |
| 20               | 100       | 0.00277          | 22        |  |
| 14               | 100       | 0.00149          | 16        |  |
| 10               | 96        |                  |           |  |
| 6.3              | 90        |                  |           |  |
| 5                | 88        |                  |           |  |
| 3.35             | 84        |                  |           |  |
| 2                | 75        |                  |           |  |
| 1.18             | 70        |                  |           |  |
| 0.6              | 64        | Particle density | (assumed) |  |
| 0.425            | 61        | 2.65             | Mg/m3     |  |
| 0.3              | 58        |                  |           |  |
| 0.212            | 55        | 1                |           |  |
| 0.15             | 52        | 1                |           |  |
| 0.063            | 47        |                  |           |  |

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 0.0        |
| Gravel             | 24.8       |
| Sand               | 28.7       |
| Silt               | 27.7       |
| Clay               | 18.8       |

| Grading Analysis       |    |         |
|------------------------|----|---------|
| D100                   | mm |         |
| D60                    | mm | 0.385   |
| D30                    | mm | 0.00643 |
| D10                    | mm |         |
| Uniformity Coefficient |    |         |
| Curvature Coefficient  |    |         |


Preparation and testing in accordance with BS1377-2:1990 unless noted below



Approved

Stephen.Watson

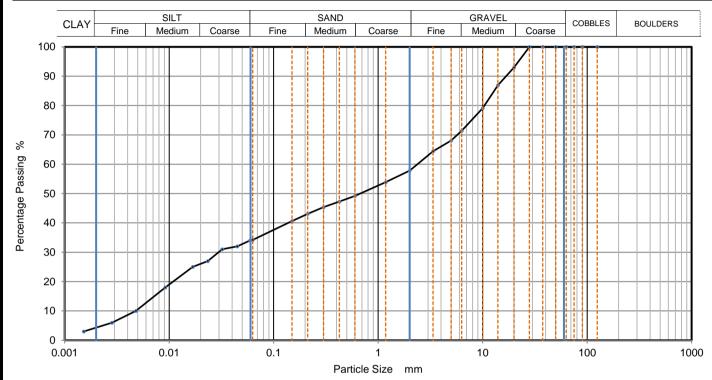
| CAUSEWAY           | DART                                     | ICLE SIZE DIST                              | Job Ref   | 20-0399B         |           |                |  |
|--------------------|------------------------------------------|---------------------------------------------|-----------|------------------|-----------|----------------|--|
| —— GEOTECH         | PARI                                     | ICLE SIZE DIST                              | IKIBUTIUN | Borehole/Pit No. | R6-WS01   |                |  |
| Site Name          | Bus Connects Route 6                     | Bus Connects Route 6 - Lucan to City Centre |           |                  |           | 2              |  |
| Soil Description   | Greyish brown sandy gravelly silty CLAY. |                                             |           |                  | Depth, m  | 0.40           |  |
| Specimen Reference | 3                                        | Specimen<br>Depth                           | 0.4       | Sample Type      | В         |                |  |
| Test Method        | BS1377:Part 2:1990, clauses 9.2 and 9.5  |                                             |           |                  | KeyLAB ID | Caus2020103043 |  |



| Siev             | /ing      | Sedimentation    |           |  |  |
|------------------|-----------|------------------|-----------|--|--|
| Particle Size mm | % Passing | Particle Size mm | % Passing |  |  |
| 125              | 100       | 0.05742          | 18        |  |  |
| 90               | 100       | 0.04343          | 17        |  |  |
| 75               | 100       | 0.03122          | 16        |  |  |
| 63               | 100       | 0.02260          | 15        |  |  |
| 50               | 100       | 0.01635          | 14        |  |  |
| 37.5             | 100       | 0.00875          | 11        |  |  |
| 28               | 100       | 0.00455          | 9         |  |  |
| 20               | 100       | 0.00269          | 7         |  |  |
| 14               | 100       | 0.00146          | 5         |  |  |
| 10               | 92        |                  |           |  |  |
| 6.3              | 83        |                  |           |  |  |
| 5                | 80        |                  |           |  |  |
| 3.35             | 74        |                  |           |  |  |
| 2                | 59        |                  |           |  |  |
| 1.18             | 48        |                  |           |  |  |
| 0.6              | 36        | Particle density | (assumed) |  |  |
| 0.425            | 32        | 2.65             | Mg/m3     |  |  |
| 0.3              | 28        |                  |           |  |  |
| 0.212 25         |           |                  |           |  |  |
| 0.15             | 23        |                  |           |  |  |
| 0.063            | 18        |                  |           |  |  |

| Dry Mass of sample, g | 511 |
|-----------------------|-----|
|-----------------------|-----|

| Sample Proportions | % dry mass |
|--------------------|------------|
| Cobbles            | 0.0        |
| Gravel             | 41.2       |
| Sand               | 40.7       |
| Silt               | 12.1       |
| Clay               | 6.0        |


| Grading Analysis       |    |         |
|------------------------|----|---------|
| D100                   | mm |         |
| D60                    | mm | 2.08    |
| D30                    | mm | 0.358   |
| D10                    | mm | 0.00607 |
| Uniformity Coefficient |    | 340     |
| Curvature Coefficient  |    | 10      |

Preparation and testing in accordance with BS1377-2:1990 unless noted below



Approved
Stephen.Watson

| CAUSEWAY           | DART                                     | ICLE SIZE DIST                              | FRIRITION | Job Ref          | 20-0399B  |                |
|--------------------|------------------------------------------|---------------------------------------------|-----------|------------------|-----------|----------------|
| ——— GEOTECH        | PARI                                     | ICLE SIZE DIST                              | IKIBUTIUN | Borehole/Pit No. | R6-WS02   |                |
| Site Name          | Bus Connects Route 6                     | Bus Connects Route 6 - Lucan to City Centre |           |                  |           | 1              |
| Soil Description   | Greyish brown sandy gravelly silty CLAY. |                                             |           |                  | Depth, m  | 0.30           |
| Specimen Reference | 3                                        | Specimen<br>Depth                           | 0.3       | Sample Type      | В         |                |
| Test Method        | BS1377:Part 2:1990, clauses 9.2 and 9.5  |                                             |           |                  | KeyLAB ID | Caus2020103044 |



| Siev             | /ing      | Sedimentation    |           |  |  |
|------------------|-----------|------------------|-----------|--|--|
| Particle Size mm | % Passing | Particle Size mm | % Passing |  |  |
| 125              | 100       | 0.05937          | 34        |  |  |
| 90               | 100       | 0.04486          | 32        |  |  |
| 75               | 100       | 0.03221          | 31        |  |  |
| 63               | 100       | 0.02346          | 27        |  |  |
| 50               | 100       | 0.01682          | 25        |  |  |
| 37.5             | 100       | 0.00916          | 18        |  |  |
| 28               | 100       | 0.00480          | 10        |  |  |
| 20               | 93        | 0.00283          | 6         |  |  |
| 14               | 87        | 0.00152          | 3         |  |  |
| 10               | 79        |                  |           |  |  |
| 6.3              | 71        |                  |           |  |  |
| 5                | 68        |                  |           |  |  |
| 3.35             | 64        |                  |           |  |  |
| 2                | 58        |                  |           |  |  |
| 1.18             | 54        |                  |           |  |  |
| 0.6              | 49        | Particle density | (assumed) |  |  |
| 0.425            | 47        | 2.65             | Mg/m3     |  |  |
| 0.3              | 45        |                  |           |  |  |
| 0.212            | 43        |                  |           |  |  |
| 0.15             | 41        |                  |           |  |  |
| 0.063            | 34        |                  |           |  |  |

| Dry Mass of sample, g | 2045 |
|-----------------------|------|
|-----------------------|------|

| Sample Proportions | % dry mass |  |  |  |  |
|--------------------|------------|--|--|--|--|
| Cobbles            | 0.0        |  |  |  |  |
| Gravel             | 42.2       |  |  |  |  |
| Sand               | 23.6       |  |  |  |  |
| Silt               | 29.8       |  |  |  |  |
| Clay               | 4.4        |  |  |  |  |

| Grading Analysis       |    |         |
|------------------------|----|---------|
| D100                   | mm |         |
| D60                    | mm | 2.38    |
| D30                    | mm | 0.0309  |
| D10                    | mm | 0.00469 |
| Uniformity Coefficient |    | 510     |
| Curvature Coefficient  |    | 0.085   |

Preparation and testing in accordance with BS1377-2:1990 unless noted below



Approved

Stephen.Watson



## **Moisture Condition Value at Natural Moisture Content Summary of Results**

Project No.

Project Name

20-0399B

Bus Connects Route 6 - Lucan to City Centre

|          | 20 0000B Bus doffices Notice of Education Oily Octific |                  |      |   |                                              |                        |                              |                                |                                |                  |
|----------|--------------------------------------------------------|------------------|------|---|----------------------------------------------|------------------------|------------------------------|--------------------------------|--------------------------------|------------------|
| Hole No. |                                                        | Sar              | mple |   | Soil Description                             | Retained on 20mm sieve | Moisture<br>Content<br><20mm | Moisture<br>Condition<br>Value | Method<br>of<br>Interpretation | Remarks          |
| Hole No. | Ref Top Base Type                                      | Soil Description | %    | % |                                              |                        | Remarks                      |                                |                                |                  |
| R6-CP07  | 7                                                      | 1.00             |      | В | Brown sandy slightly gravelly silty<br>CLAY. | 30                     | 19                           | 9.3                            | Best fit line                  |                  |
|          |                                                        |                  |      |   |                                              |                        |                              |                                |                                |                  |
|          |                                                        |                  |      |   |                                              |                        |                              |                                |                                |                  |
|          |                                                        |                  |      |   |                                              |                        |                              |                                |                                |                  |
|          |                                                        |                  |      |   |                                              |                        |                              |                                |                                |                  |
|          |                                                        |                  |      |   |                                              |                        |                              |                                |                                |                  |
|          |                                                        |                  |      |   |                                              |                        |                              |                                |                                |                  |
|          |                                                        |                  |      |   |                                              |                        |                              |                                |                                |                  |
|          |                                                        |                  |      |   |                                              |                        |                              |                                |                                |                  |
|          |                                                        |                  |      |   |                                              |                        |                              |                                |                                |                  |
|          |                                                        |                  |      |   |                                              |                        |                              |                                |                                |                  |
|          |                                                        |                  |      |   |                                              |                        |                              |                                |                                |                  |
|          | •                                                      |                  | •    | - |                                              |                        |                              |                                | L <i>P</i>                     | AB 10R Version 5 |
|          |                                                        |                  |      |   |                                              |                        |                              |                                |                                |                  |

Key

Test performed in accordance with BS1377:Part4:1990, clause 5.4 unless

annotated otherwise

Date Printed

Approved By

18/11/2020

Stephen.Watson

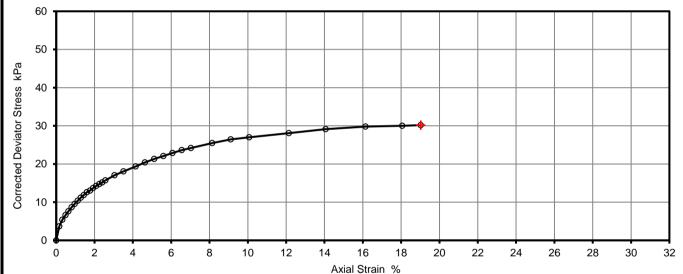


| CAUSEWAY              | Unconsolidate Compression | Job Ref             | 20-0399B     |      |                  |                |
|-----------------------|---------------------------|---------------------|--------------|------|------------------|----------------|
| GEOTECH               | of pore press             |                     |              | CIIC | Borehole/Pit No. | R6-CP09        |
| Site Name             | Bus Connects Route        | e 6 - Lucan to City | Centre       |      | Sample No.       | 15             |
| Soil Description      | Greyish brown sand        | y silty CLAY.       |              |      | Depth            | 3.00           |
| Specimen<br>Reference | 6                         | Specimen<br>Depth   | 3.05         | m    | Sample Type      | U              |
| Specimen Description  | Very soft greyish bro     | own sandy silty Cl  | _AY.         |      | KeyLAB ID        | Caus2020103036 |
| Test Method           | BS1377 : Part 7 : 19      | 90, clause 8, sing  | gle specimen |      | Date of test     | 09/11/2020     |

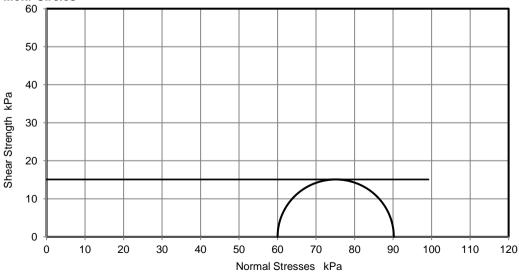
Test Number Length Diameter **Bulk Density** Moisture Content Dry Density

Rate of Strain Cell Pressure At failure

Axial Strain Deviator Stress, ( $\sigma$ 1 -  $\sigma$ 3)f Undrained Shear Strength, cu


Mode of Failure

| 1     |       |
|-------|-------|
| 208.2 | mm    |
| 105.2 | mm    |
| 2.10  | Mg/m3 |
| 22.5  | %     |
| 1.71  | Mg/m3 |


| 2.0  | %/min |
|------|-------|
| 60   | kPa   |
| 19.0 | %     |
| 30   | kPa   |
| 15   | kPa ½ |
|      |       |

½( σ1 - σ3 )f

#### **Deviator Stress v Axial Strain**







Deviator stress corrected for area change and membrane effects based on Fig 11 BS1377-7:1990

Mohr circles and their interpretation is not covered by BS1377-7. This is provided for information only.

Remarks

No failure defined. Testing terminated at 20% axial strain.

Approved

Stephen.Watson

Printed

19/11/2020 08:54

LAB 15R Version 4



| · C                                                                                                                                          | AUSEW<br>GEOTE                                                                    | AY                                                                |       |       | Point Load Strength Index Tests Summary of Results |           |                       |                          |                     |       |             |                    |            |            |                            |                  |            |                             |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------|-------|-------|----------------------------------------------------|-----------|-----------------------|--------------------------|---------------------|-------|-------------|--------------------|------------|------------|----------------------------|------------------|------------|-----------------------------|
| Project No.<br>20                                                                                                                            | )-0399B                                                                           |                                                                   |       | Proje | ect Nam                                            | е         |                       | Bus C                    | onnec               | ts Ro | ute 6 - I   | Lucan              | to City    | Centre     |                            |                  |            |                             |
| Borehole                                                                                                                                     | Sa                                                                                | ample                                                             |       | Spe   | ecimen                                             | 6.17      | Test Type<br>see ISRM |                          | st Type (N/X)       |       | Dimensions  |                    | nensions   |            | Equivalent diameter,<br>De | Point<br>Strengt |            | Remarks<br>(including       |
| No.                                                                                                                                          | Depth                                                                             | Ref.                                                              | Туре  | Ref.  | Depth                                              | Rock Type | Type<br>(D, A, I, B)  | Direction<br>(L, P or U) | Failure Valid (Y/N) | Lne   | W           | Dps                | Dps'       |            | Equival                    | Is               | Is(5<br>0) | water content if measured)  |
| R6-CP07                                                                                                                                      | m<br>6.85                                                                         |                                                                   | С     | 1     | m<br>6.85                                          | LIMESTONE | A                     | U                        | NO                  | mm    | mm<br>101.5 | mm<br>56.0         | mm<br>55.0 | kN<br>23.2 | mm<br>84.3                 | MPa<br>3.3       | MPa<br>4.1 |                             |
|                                                                                                                                              |                                                                                   |                                                                   |       |       |                                                    | LIMESTONE |                       |                          |                     |       |             |                    |            |            |                            |                  |            |                             |
| R6-CP07                                                                                                                                      | 7.60                                                                              |                                                                   | С     | 2     | 7.60                                               | LIMESTONE | D                     | U                        | NO                  | 68.3  | 101.6       |                    | 99.0       | 30.1       | 100.3                      |                  | 4.1        |                             |
| R6-CP07                                                                                                                                      | 7.80                                                                              |                                                                   | С     | 3     | 7.80                                               | LIMESTONE | D                     | U                        | YES                 | 58.5  | 101.6       | 101.6              | 98.0       | 11.6       | 99.8                       | 1.2              | 1.6        |                             |
| R6-CP07                                                                                                                                      | 8.50                                                                              |                                                                   | С     | 4     | 8.50                                               | LIMESTONE | D                     | U                        | YES                 | 71.0  | 101.7       | 101.7              | 98.0       | 10.1       | 99.8                       | 1.0              | 1.4        |                             |
| R6-CP07                                                                                                                                      | 9.40                                                                              |                                                                   | С     | 5     | 9.40                                               | LIMESTONE | I                     | U                        | NO                  | 102.1 | 80.7        | 58.0               | 56.0       | 5.6        | 75.9                       | 1.0              | 1.2        |                             |
| R6-CP07                                                                                                                                      | 10.60                                                                             |                                                                   | С     | 6     | 10.60                                              | LIMESTONE | А                     | U                        | NO                  | 101.6 | 101.6       | 62.0               | 60.0       | 5.2        | 88.1                       | 0.7              | 0.9        |                             |
|                                                                                                                                              |                                                                                   |                                                                   |       |       |                                                    |           |                       |                          |                     |       |             |                    |            |            |                            |                  |            |                             |
|                                                                                                                                              |                                                                                   |                                                                   |       |       |                                                    |           |                       |                          |                     |       |             |                    |            |            |                            |                  |            |                             |
|                                                                                                                                              |                                                                                   |                                                                   |       |       |                                                    |           |                       |                          |                     |       |             |                    |            |            |                            |                  |            |                             |
|                                                                                                                                              |                                                                                   |                                                                   |       |       |                                                    |           |                       |                          |                     |       |             |                    |            |            |                            |                  |            |                             |
|                                                                                                                                              |                                                                                   |                                                                   |       |       |                                                    |           |                       |                          |                     |       |             |                    |            |            |                            |                  |            |                             |
|                                                                                                                                              |                                                                                   |                                                                   |       |       |                                                    |           |                       |                          |                     |       |             |                    |            |            |                            |                  |            |                             |
|                                                                                                                                              |                                                                                   |                                                                   |       |       |                                                    |           |                       |                          |                     |       |             |                    |            |            |                            |                  |            |                             |
|                                                                                                                                              |                                                                                   |                                                                   |       |       |                                                    |           |                       |                          |                     |       |             |                    |            |            |                            |                  |            |                             |
|                                                                                                                                              |                                                                                   |                                                                   |       |       |                                                    |           |                       |                          |                     |       |             |                    |            |            |                            |                  |            |                             |
|                                                                                                                                              |                                                                                   |                                                                   |       |       |                                                    |           |                       |                          |                     |       |             |                    |            |            |                            |                  |            |                             |
|                                                                                                                                              |                                                                                   |                                                                   |       |       |                                                    |           |                       |                          |                     |       |             |                    |            |            |                            |                  |            |                             |
| Test Type                                                                                                                                    |                                                                                   |                                                                   |       |       | 5.                                                 |           |                       | Avio                     |                     |       |             | Plo                | ole.       |            |                            |                  |            |                             |
| Direction L - parallel to plane P - perpendicular t U - unknown or rai Dimensions Dps - Distance bet Dps' - at failure ( s Lne - Length from | es of weakn<br>to planes of<br>indom<br>tween plate<br>ee ISRM no<br>platens to r | of weakness  Dps  Dps  Une  Dps  Dps  Dps  Dps  Dps  Dps  Dps  Dp |       |       |                                                    |           |                       |                          |                     |       |             |                    |            |            |                            |                  |            |                             |
| Test performed in Detailed legend fo                                                                                                         |                                                                                   |                                                                   |       |       |                                                    |           | noted o               | therwis                  | se                  |       | Date F      | Printed<br>7/11/20 | 20         | Appro      | ved B                      | <b>_</b>         | lumlum     |                             |
| Size factor, F = (D                                                                                                                          | 0e/50)0.45                                                                        | for all t                                                         | ests. |       |                                                    | 1         | LAB 1                 | 7R V                     | 'ersio              | า 4   |             |                    |            | Stenk      | nen W                      | /atson           |            | U K A S<br>TESTING<br>10122 |



## **UNIAXIAL COMPRESSION TEST ON ROCK - SUMMARY OF RESULTS**

Project No.

Project Name

20-0399B

Bus Connects Route 6 - Lucan to City Centre

|          |     | Sar  | mple |      |                        | S<br>Dir | Specime<br>mensior | n<br>ns2  | Bulk          | Water        |                                 | ial Compre      | ession3       |         |
|----------|-----|------|------|------|------------------------|----------|--------------------|-----------|---------------|--------------|---------------------------------|-----------------|---------------|---------|
| Hole No. | Ref | Тор  | Base | Туре | Rock Type              | Dia.     | Length             | H/D       | Density2      | Content<br>1 | Condition                       | Mode of failure | UCS           | Remarks |
|          |     |      |      |      |                        | mm       | mm                 |           | Mg/m3         | %            |                                 | laliule         | MPa           |         |
| R6-CP07  |     | 8.85 | 9.05 | O    | LIMESTONE              | 101.6    | 254.0              | 2.5       | 2.67          | 0.6          | as<br>received                  | F               | 35.6          |         |
|          |     |      |      |      |                        |          |                    |           |               |              |                                 |                 |               |         |
|          |     |      |      |      |                        |          |                    |           |               |              |                                 |                 |               |         |
|          |     |      |      |      |                        |          |                    |           |               |              |                                 |                 |               |         |
|          |     |      |      |      |                        |          |                    |           |               |              |                                 |                 |               |         |
|          |     |      |      |      |                        |          |                    |           |               |              |                                 |                 |               |         |
|          |     |      |      |      |                        |          |                    |           |               |              |                                 |                 |               |         |
|          |     |      |      |      |                        |          |                    |           |               |              |                                 |                 |               |         |
|          |     |      |      |      |                        |          |                    |           |               |              |                                 |                 |               |         |
|          |     |      |      |      |                        |          |                    |           |               |              |                                 |                 |               |         |
|          |     |      |      |      |                        |          |                    |           |               |              |                                 |                 |               |         |
|          |     |      |      |      |                        |          |                    |           |               |              |                                 |                 |               |         |
|          |     |      |      |      |                        |          |                    |           |               |              |                                 |                 |               |         |
|          |     |      |      |      |                        |          |                    |           |               |              |                                 |                 |               |         |
|          |     |      |      |      |                        |          |                    |           |               |              |                                 |                 |               |         |
|          |     |      |      |      | 105 ± 3 oC, specimen a |          |                    | and deriv | ation of bulk | density      | Mode of failu<br>S - Single sho |                 | MS - multiple | e shear |

3 ISRM p153 part 1, determination of Uniaxial Compressive Strength ( UCS ) of Rock Materials

above notes apply unless annotated otherwise in the remarks

AC - Axial cleavage

F - Fragmented

| Test Specification                                                                                                                   | Date Printed | Approved By    | Table |   |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|-------|---|
| International Society for Rock Mechanics, The complete ISRM suggested methods for Rock Characterization Testing and Monitoring, 2007 | 17/11/2020   |                |       | 1 |
|                                                                                                                                      |              |                | sheet |   |
|                                                                                                                                      |              | Stephen.Watson |       | 1 |



eurofins

Chemtest
Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 20-30010-1

Initial Date of Issue: 10-Nov-2020

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Carin Cornwall

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey

Stephen McCracken Stephen Watson Stuart Abraham Thomas McAllis

**Project** 20-0399B Bus Connects Route 6

Quotation No.: Date Received: 05-Nov-2020

Order No.: Date Instructed: 05-Nov-2020

No. of Samples: 16

Turnaround (Wkdays): 5 Results Due: 11-Nov-2020

Date Approved: 10-Nov-2020

Approved By:

**Details:** Glynn Harvey, Technical Manager



Eurofins Chemtest Ltd Depot Road . Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

| Client: Causeway Geotech Ltd        |         | Cher                 | mtest J             | ob No.:  | 20-30010    | 20-30010    | 20-30010    | 20-30010    | 20-30010    | 20-30010    | 20-30010    | 20-30010    | 20-30010    |
|-------------------------------------|---------|----------------------|---------------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Quotation No.:                      | (       | Chemtest Sample ID.: |                     | 1092206  | 1092207     | 1092208     | 1092209     | 1092210     | 1092211     | 1092212     | 1092213     | 1092214     |             |
| Order No.:                          |         | Client Sample Ref.:  |                     | 10       | 1           | 5           | 6           | 6           | 7           | 12          |             | 7           |             |
|                                     |         | Clie                 | ent Sam             | ple ID.: | R6-CP03     | R6-CP04     | R6-CP04     | R6-CP05     | R6-CP06     | R6-CP07     | R6-CP07     | R6-CP07     | R6-CP08     |
|                                     |         |                      | Sampl               | е Туре:  | SOIL        |
|                                     |         |                      | Top De <sub>l</sub> | oth (m): | 2.00        | 0.10        | 1.70        | 2.50        | 1.90        | 1.00        | 3.20        | 5.20        | 2.00        |
|                                     |         |                      | Date Sa             | ampled:  | 04-Nov-2020 |
| Determinand                         | Accred. | SOP                  | Units               | LOD      |             |             |             |             |             |             |             |             |             |
| Moisture                            | N       | 2030                 | %                   | 0.020    | 14          | 9.2         | 11          | 7.7         | 8.6         | 14          | 20          | 12          | 13          |
| рН                                  | U       | 2010                 |                     | 4.0      | 8.8         | 8.7         | 8.5         | 8.7         | 8.9         | 8.6         | 8.2         | 8.8         | 8.9         |
| Sulphate (2:1 Water Soluble) as SO4 | U       | 2120                 | g/l                 | 0.010    | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     | 0.069       | 0.024       | < 0.010     |

| Client: Causeway Geotech Ltd        |         | Cher                | ntest Jo | ob No.:  | 20-30010    | 20-30010    | 20-30010    | 20-30010    | 20-30010    | 20-30010    | 20-30010    |
|-------------------------------------|---------|---------------------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Quotation No.:                      | (       | Chemte              | st Sam   | ple ID.: | 1092215     | 1092216     | 1092217     | 1092218     | 1092219     | 1092220     | 1092221     |
| Order No.:                          |         | Client Sample Ref.: |          | 11       | 8           | 3           | 3           | 11          | 2           | 1           |             |
|                                     |         | Clie                | ent Sam  | ple ID.: | R6-CP09     | R6-CP09     | R6-CP10     | R6-CP11     | R6-CP11     | R6-WS01     | R6-WS02     |
|                                     |         |                     | Sample   | е Туре:  | SOIL        |
|                                     |         |                     | Top Dep  | oth (m): | 1.20        | 3.00        | 1.20        | 1.20        | 3.00        | 0.40        | 0.30        |
|                                     |         |                     | Date Sa  | ampled:  | 04-Nov-2020 |
| Determinand                         | Accred. | SOP                 | Units    | LOD      |             |             |             |             |             |             |             |
| Moisture                            | N       | 2030                | %        | 0.020    | 17          | 15          | 7.3         | 8.1         | 11          | 7.2         | 8.1         |
| рН                                  | U       | 2010                |          | 4.0      | 8.6         | 8.6         | 8.5         | 8.2         | 9.4         | 8.7         | 8.8         |
| Sulphate (2:1 Water Soluble) as SO4 | U       | 2120                | g/l      | 0.010    | 0.025       | < 0.010     | 0.082       | 1.2         | 0.21        | < 0.010     | < 0.010     |

# **Test Methods**

| SOP  | Title                                                      | Parameters included                  | Method summary                                                                                       |
|------|------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------|
| 2010 | pH Value of Soils                                          | рН                                   | pH Meter                                                                                             |
| 2030 | Moisture and Stone Content of Soils(Requirement of MCERTS) | Moisture content                     | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C. |
| 2040 | Soil Description(Requirement of MCERTS)                    | Soil description                     | As received soil is described based upon BS5930                                                      |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium     | Boron; Sulphate; Magnesium; Chromium | Aqueous extraction / ICP-OES                                                                         |

### **Report Information**

# Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
  - < "less than"
  - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

#### **Sample Retention and Disposal**

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>



# eurofins Chemtest

Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 20-31075-1

Initial Date of Issue: 19-Nov-2020

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Carin Cornwall

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey

Stephen McCracken Stephen Watson Stuart Abraham Thomas McAllis

Project 20-0399B Route 6 Lucan to City Centre

Quotation No.: Date Received: 16-Nov-2020

Order No.: Date Instructed: 16-Nov-2020

No. of Samples: 1

Turnaround (Wkdays): 5 Results Due: 20-Nov-2020

Date Approved: 19-Nov-2020

Approved By:

Details: Glynn Harvey, Technical Manager



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

# Project: 20-0399B Route 6 Lucan to City Centre

| Client: Causeway Geotech Ltd        |                  | Che                  | ntest Jo | ob No.: | 20-31075    |
|-------------------------------------|------------------|----------------------|----------|---------|-------------|
| Quotation No.:                      | (                | Chemtest Sample ID.: |          |         |             |
|                                     | Sample Location: |                      |          |         | R6-CP07     |
|                                     | Sample Type:     |                      |          | SOIL    |             |
|                                     | Top Depth (m):   |                      |          |         | 6.85        |
|                                     |                  |                      | Date Sa  | ampled: | 13-Nov-2020 |
| Determinand                         | Accred.          | SOP                  | Units    | LOD     |             |
| Moisture                            | N                | 2030                 | %        | 0.020   | 1.9         |
| рН                                  | U                | 2010                 |          | 4.0     | 8.6         |
| Sulphate (2:1 Water Soluble) as SO4 | U                | 2120                 | g/l      | 0.010   | 0.088       |

# **Test Methods**

| SOP  | Title                                                      | Parameters included                  | Method summary                                                                                       |
|------|------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------|
| 2010 | pH Value of Soils                                          | рН                                   | pH Meter                                                                                             |
| 2030 | Moisture and Stone Content of Soils(Requirement of MCERTS) | Moisture content                     | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C. |
| 2040 | Soil Description(Requirement of MCERTS)                    | Soil description                     | As received soil is described based upon BS5930                                                      |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium     | Boron; Sulphate; Magnesium; Chromium | Aqueous extraction / ICP-OES                                                                         |

### **Report Information**

# Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
  - < "less than"
  - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

#### **Sample Retention and Disposal**

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>



## LABORATORY RESTRICTION REPORT

| Project Reference | 20-0399B                             |      |     | То       | Sean Ross                  |
|-------------------|--------------------------------------|------|-----|----------|----------------------------|
| Project Name      | Bus Connects Route 9 - Lucan to City | Cent | re  | Position | Project Manager            |
| - reject riame    |                                      |      |     | From     | Joseph Nicholl             |
| TR reference      | 20-0399B                             | /    | G01 | Position | Laboratory Quality Manager |

The following sample(s) and test(s) are restricted as detailed below. Could you please complete the "Required Action" column and return the completed form to the laboratory.

| Hole                                                                       |        |              | Test |             | 5 4 5 4 4                                                           | Described Astion                       |  |  |
|----------------------------------------------------------------------------|--------|--------------|------|-------------|---------------------------------------------------------------------|----------------------------------------|--|--|
| Number                                                                     | Number | Depth<br>(m) | Туре | Type        | Reason for Restriction                                              | Required Action                        |  |  |
| R6<br>CP01                                                                 | 14     | 3.00         | U    | UU Triaxial | Unable to obtain specimen for test - coarse gravel content too high | CANCEL                                 |  |  |
| R6<br>CP03                                                                 | 12     | 1.20         | U    | UU Triaxial | Unable to obtain specimen for test - sample broken by layer of sand | CANCEL                                 |  |  |
| R6<br>CP04                                                                 | 6      | 2.00         | U    | UU Triaxial | Unable to obtain specimen for test - sample broken on extrusion     | CANCEL                                 |  |  |
| R6<br>CP05                                                                 | 5      | 2.00         | U    | UU Triaxial | Unable to obtain specimen for test - coarse gravel content too high | CANCEL                                 |  |  |
| R6<br>CP06                                                                 | 9      | 2.00         | U    | UU Triaxial | Unable to obtain specimen for test - cobbles present in sample      | CANCEL                                 |  |  |
| R6<br>CP07                                                                 | 7      | 1.00         | В    | UU Triaxial | Unable to obtain specimen for test - cobbles present in sample      | CANCEL                                 |  |  |
| R6<br>CP07                                                                 |        | 6.20         | С    | UU Triaxial | Unable to obtain specimen for test - cobbles present in sample      | CANCEL                                 |  |  |
| R6<br>CP08                                                                 | 13     | 2.00         | U    | UU Triaxial | Unable to obtain specimen for test - coarse gravel content too high | CANCEL                                 |  |  |
|                                                                            |        |              |      |             |                                                                     |                                        |  |  |
| For electronic reporting a form of electronic signature or printed name is |        |              |      | e is        | Laboratory Signature<br>Joseph Nicholl                              | Project Manager Signature<br>Sean Ross |  |  |
| acceptab                                                                   | le     |              |      |             | Date<br>10 November 2020                                            | Date                                   |  |  |



# APPENDIX G ENVIRONMENTAL LABORATORY TEST RESULTS





# eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 20-26018-1

Initial Date of Issue: 02-Oct-2020

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Carin Cornwall

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey

Stephen McCracken Stephen Watson Stuart Abraham Thomas McAllis

**Project** 20-0399B Bus Connects Route 6

Quotation No.: Q20-21063 Date Received: 28-Sep-2020

Order No.: Date Instructed: 28-Sep-2020

No. of Samples: 1

Turnaround (Wkdays): 5 Results Due: 02-Oct-2020

Date Approved: 02-Oct-2020

Approved By:

**Details:** Glynn Harvey, Technical Manager



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# Results - Leachate

| Client: Causeway Geotech Ltd |                            |                      | Che  | mtest Jo | ob No.: | 20-26018    |
|------------------------------|----------------------------|----------------------|------|----------|---------|-------------|
| Quotation No.: Q20-21063     |                            | Chemtest Sample ID.: |      |          |         |             |
|                              |                            | Sample Location:     |      |          |         | R6-CP07     |
|                              | Sample Type:               |                      |      |          | SOIL    |             |
|                              | Top Depth (m):             |                      |      |          | 0.50    |             |
|                              |                            |                      |      | Date Sa  | ampled: | 25-Sep-2020 |
| Determinand                  | Accred. SOP Type Units LOD |                      |      |          |         |             |
| Ammonium                     | U                          | 1220                 | 10:1 | mg/l     | 0.050   | 0.45        |
| Ammonium                     | N                          | 1220                 | 10:1 | mg/kg    | 0.10    | 9.3         |

| Client: Causeway Geotech Ltd  |         | Chemtest Job No.: |          |         |                         |  |
|-------------------------------|---------|-------------------|----------|---------|-------------------------|--|
| Quotation No.: Q20-21063      | (       |                   | st Sam   |         | 1071187                 |  |
|                               |         | Sa                | ample Lo |         | R6-CP07<br>SOIL         |  |
|                               |         | Sample Type:      |          |         |                         |  |
|                               |         | Top Depth (m):    |          |         |                         |  |
|                               |         |                   | Date Sa  | ampled: | 25-Sep-2020             |  |
|                               |         |                   | Asbest   | os Lab: | COVENTRY                |  |
| Determinand                   | Accred. | SOP               | Units    | LOD     |                         |  |
| ACM Type                      | U       | 2192              |          | N/A     | =                       |  |
| Asbestos Identification       | U       | 2192              |          | N/A     | No Asbestos<br>Detected |  |
| ACM Detection Stage           | U       | 2192              |          | N/A     | -                       |  |
| Moisture                      | N       | 2030              | %        | 0.020   | 14                      |  |
| pН                            | М       | 2010              |          | 4.0     | 8.7                     |  |
| Boron (Hot Water Soluble)     | М       |                   | mg/kg    |         | 0.56                    |  |
| Sulphur (Elemental)           | М       |                   | mg/kg    | 1.0     | 3.2                     |  |
| Cyanide (Total)               | М       |                   | mg/kg    | 0.50    | < 0.50                  |  |
| Sulphide (Easily Liberatable) | N       | 2325              |          | 0.50    | 9.1                     |  |
| Sulphate (Total)              | М       | 2430              | %        | 0.010   | 0.023                   |  |
| Arsenic                       | М       | 2450              | mg/kg    | 1.0     | 4.8                     |  |
| Barium                        | М       | 2450              |          | 10      | 42                      |  |
| Cadmium                       | М       |                   | mg/kg    |         | < 0.10                  |  |
| Chromium                      | М       |                   | mg/kg    | 1.0     | 29                      |  |
| Molybdenum                    | М       |                   | mg/kg    | 2.0     | < 2.0                   |  |
| Antimony                      | N       |                   | mg/kg    |         | < 2.0                   |  |
| Copper                        | М       | 2450              | mg/kg    | 0.50    | 15                      |  |
| Mercury                       | М       | 2450              |          | 0.10    | < 0.10                  |  |
| Nickel                        | М       | 2450              | J        | 0.50    | 25                      |  |
| Lead                          | М       | 2450              | mg/kg    |         | 14                      |  |
| Selenium                      | М       |                   | mg/kg    | 0.20    | < 0.20                  |  |
| Zinc                          | М       |                   | mg/kg    | 0.50    | 50                      |  |
| Chromium (Trivalent)          | N       | 2490              |          | 1.0     | 29                      |  |
| Chromium (Hexavalent)         | N       | 2490              |          | 0.50    | < 0.50                  |  |
| Total Organic Carbon          | М       | 2625              | %        | 0.20    | 1.4                     |  |
| Mineral Oil                   | N       | 2670              |          | 10      | < 10                    |  |
| Aliphatic TPH >C5-C6          | N       | 2680              |          | 1.0     | < 1.0                   |  |
| Aliphatic TPH >C6-C8          | N       |                   | mg/kg    | 1.0     | < 1.0                   |  |
| Aliphatic TPH >C8-C10         | М       |                   | mg/kg    | 1.0     | < 1.0                   |  |
| Aliphatic TPH >C10-C12        | М       | 2680              |          | 1.0     | < 1.0                   |  |
| Aliphatic TPH >C12-C16        | М       | 2680              | mg/kg    | 1.0     | < 1.0                   |  |
| Aliphatic TPH >C16-C21        | М       | 2680              |          | 1.0     | < 1.0                   |  |
| Aliphatic TPH >C21-C35        | М       | 2680              | mg/kg    | 1.0     | < 1.0                   |  |
| Aliphatic TPH >C35-C44        | N       |                   | mg/kg    | 1.0     | < 1.0                   |  |
| Total Aliphatic Hydrocarbons  | N       |                   | mg/kg    | 5.0     | < 5.0                   |  |
| Aromatic TPH >C5-C7           | N       |                   | mg/kg    | 1.0     | < 1.0                   |  |
| Aromatic TPH >C7-C8           | N       | 2680              |          | 1.0     | < 1.0                   |  |
| Aromatic TPH >C8-C10          | М       |                   | mg/kg    | 1.0     | < 1.0                   |  |

| Client: Causeway Geotech Ltd |         | Chemtest Job No.:   |          |         |                 |  |
|------------------------------|---------|---------------------|----------|---------|-----------------|--|
| Quotation No.: Q20-21063     |         | Chemtest Sample ID. |          |         |                 |  |
|                              |         | Sa                  | ample Lo |         | R6-CP07<br>SOIL |  |
|                              |         | Sample Type         |          |         |                 |  |
|                              |         | Top Depth (m):      |          |         |                 |  |
|                              |         |                     | Date Sa  | ampled: | 25-Sep-2020     |  |
|                              |         |                     | Asbest   | os Lab: | COVENTRY        |  |
| Determinand                  | Accred. | SOP                 | Units    | LOD     |                 |  |
| Aromatic TPH >C10-C12        | М       | 2680                | mg/kg    | 1.0     | < 1.0           |  |
| Aromatic TPH >C12-C16        | M       | 2680                | mg/kg    | 1.0     | < 1.0           |  |
| Aromatic TPH >C16-C21        | U       | 2680                | mg/kg    | 1.0     | < 1.0           |  |
| Aromatic TPH >C21-C35        | М       | 2680                | mg/kg    | 1.0     | < 1.0           |  |
| Aromatic TPH >C35-C44        | N       | 2680                | mg/kg    | 1.0     | < 1.0           |  |
| Total Aromatic Hydrocarbons  | N       | 2680                |          | 5.0     | < 5.0           |  |
| Total Petroleum Hydrocarbons | N       |                     | mg/kg    |         | < 10            |  |
| Benzene                      | М       | 2760                | J        | 1.0     | < 1.0           |  |
| Toluene                      | М       | 2760                |          | 1.0     | < 1.0           |  |
| Ethylbenzene                 | М       | 2760                |          | 1.0     | < 1.0           |  |
| m & p-Xylene                 | М       | 2760                | μg/kg    | 1.0     | < 1.0           |  |
| o-Xylene                     | М       | 2760                |          | 1.0     | < 1.0           |  |
| Methyl Tert-Butyl Ether      | M       | 2760                |          | 1.0     | < 1.0           |  |
| Naphthalene                  | M       |                     | mg/kg    |         | < 0.10          |  |
| Acenaphthylene               | N       |                     | mg/kg    |         | < 0.10          |  |
| Acenaphthene                 | M       |                     | mg/kg    |         | < 0.10          |  |
| Fluorene                     | M       |                     | mg/kg    |         | < 0.10          |  |
| Phenanthrene                 | M       | 2800                |          |         | < 0.10          |  |
| Anthracene                   | M       | 2800                |          |         | < 0.10          |  |
| Fluoranthene                 | M       | 2800                |          |         | < 0.10          |  |
| Pyrene                       | M       |                     | mg/kg    |         | < 0.10          |  |
| Benzo[a]anthracene           | M       |                     | mg/kg    |         | < 0.10          |  |
| Chrysene                     | M       |                     | mg/kg    |         | < 0.10          |  |
| Benzo[b]fluoranthene         | M       | 2800                |          |         | < 0.10          |  |
| Benzo[k]fluoranthene         | M       |                     | mg/kg    |         | < 0.10          |  |
| Benzo[a]pyrene               | M       |                     | mg/kg    |         | < 0.10          |  |
| Indeno(1,2,3-c,d)Pyrene      | M       | 2800                |          |         | < 0.10          |  |
| Dibenz(a,h)Anthracene        | N       | 2800                |          |         | < 0.10          |  |
| Benzo[g,h,i]perylene         | M       |                     | mg/kg    | 0.10    | < 0.10          |  |
| Coronene                     | N N     |                     | mg/kg    |         | < 0.10          |  |
| Total Of 17 PAH's            | N N     | 2800                |          |         | < 2.0           |  |
| PCB 28                       | U       |                     | mg/kg    |         | < 0.010         |  |
| PCB 52                       | U       | 2815                |          |         | < 0.010         |  |
| PCB 90+101                   | U       |                     | mg/kg    |         | < 0.010         |  |
| PCB 118                      | U       |                     | mg/kg    |         | < 0.010         |  |
| PCB 118                      |         |                     |          |         |                 |  |
| PCB 138                      | U       |                     | mg/kg    |         | < 0.010         |  |
|                              |         |                     | mg/kg    |         | < 0.010         |  |
| PCB 180                      | U       |                     | mg/kg    |         | < 0.010         |  |
| Total PCBs (7 Congeners)     | U       | 2815                | mg/kg    | 0.10    | < 0.10          |  |

| Client: Causeway Geotech Ltd |                | Che                  | mtest Jo | b No.:  | 20-26018 |  |
|------------------------------|----------------|----------------------|----------|---------|----------|--|
| Quotation No.: Q20-21063     | (              | Chemtest Sample ID.: |          |         |          |  |
|                              |                | Sample Location:     |          |         |          |  |
|                              |                | Sample Type:         |          |         |          |  |
|                              | Top Depth (m): |                      |          |         | 0.50     |  |
|                              |                | Date Sampled:        |          |         |          |  |
|                              |                |                      | Asbest   | os Lab: | COVENTRY |  |
| Determinand                  | Accred.        | SOP                  | Units    | LOD     |          |  |
| Total Phenols                | М              | 2920                 | mg/kg    | 0.30    | < 0.30   |  |

# **Results - Single Stage WAC**

Project: 20-0399B Bus Connects Route 6

| Project: 20-0399B Bus Connects I |             |         |             |             | 1leur v      | N1- A            | - Oultania   |
|----------------------------------|-------------|---------|-------------|-------------|--------------|------------------|--------------|
| Chemtest Job No:                 | 20-26018    |         |             |             | Landilli     | Waste Acceptanc  | e Criteria   |
| Chemtest Sample ID:              | 1071187     |         |             |             |              | Limits           | 1            |
| Sample Ref:                      |             |         |             |             |              | Stable, Non-     |              |
| Sample ID:                       | Do 0007     |         |             |             |              | reactive         |              |
| Sample Location:                 | R6-CP07     |         |             |             |              | hazardous        | Hazardous    |
| Top Depth(m):                    | 0.50        |         |             |             | Inert Waste  | waste in non-    | Waste        |
| Bottom Depth(m):                 |             |         |             |             | Landfill     | hazardous        | Landfill     |
| Sampling Date:                   | 25-Sep-2020 |         |             |             |              | Landfill         |              |
| Determinand                      | SOP         | Accred. | Units       |             |              |                  |              |
| Total Organic Carbon             | 2625        | M       | %           | 1.4         | 3            | 5                | 6            |
| Loss On Ignition                 | 2610        | M       | %           | 8.7         |              |                  | 10           |
| Total BTEX                       | 2760        | M       | mg/kg       | < 0.010     | 6            |                  |              |
| Total PCBs (7 Congeners)         | 2815        | M       | mg/kg       | < 0.10      | 1            |                  |              |
| TPH Total WAC (Mineral Oil)      | 2670        | M       | mg/kg       | < 10        | 500          |                  |              |
| Total (Of 17) PAH's              | 2800        | N       | mg/kg       | < 2.0       | 100          |                  |              |
| рН                               | 2010        | М       |             | 8.7         |              | >6               |              |
| Acid Neutralisation Capacity     | 2015        | N       | mol/kg      | 0.057       |              | To evaluate      | To evaluate  |
| Eluate Analysis                  |             |         | 10:1 Eluate | 10:1 Eluate | Limit values | for compliance l | eaching test |
|                                  |             |         | mg/l        | mg/kg       | using B      | S EN 12457 at L/ | S 10 l/kg    |
| Arsenic                          | 1450        | U       | < 0.0010    | < 0.050     | 0.5          | 2                | 25           |
| Barium                           | 1450        | U       | 0.0077      | < 0.50      | 20           | 100              | 300          |
| Cadmium                          | 1450        | U       | < 0.00010   | < 0.010     | 0.04         | 1                | 5            |
| Chromium                         | 1450        | U       | < 0.0010    | < 0.050     | 0.5          | 10               | 70           |
| Copper                           | 1450        | U       | 0.0070      | 0.070       | 2            | 50               | 100          |
| Mercury                          | 1450        | U       | < 0.00050   | < 0.0050    | 0.01         | 0.2              | 2            |
| Molybdenum                       | 1450        | U       | 0.0031      | < 0.050     | 0.5          | 10               | 30           |
| Nickel                           | 1450        | U       | 0.0030      | < 0.050     | 0.4          | 10               | 40           |
| Lead                             | 1450        | U       | < 0.0010    | < 0.010     | 0.5          | 10               | 50           |
| Antimony                         | 1450        | U       | < 0.0010    | < 0.010     | 0.06         | 0.7              | 5            |
| Selenium                         | 1450        | U       | < 0.0010    | < 0.010     | 0.1          | 0.5              | 7            |
| Zinc                             | 1450        | U       | 0.0091      | < 0.50      | 4            | 50               | 200          |
| Chloride                         | 1220        | U       | 12          | 120         | 800          | 15000            | 25000        |
| Fluoride                         | 1220        | U       | 0.35        | 3.5         | 10           | 150              | 500          |
| Sulphate                         | 1220        | U       | 12          | 120         | 1000         | 20000            | 50000        |
| Total Dissolved Solids           | 1020        | N       | 140         | 1400        | 4000         | 60000            | 100000       |
| Phenol Index                     | 1920        | U       | < 0.030     | < 0.30      | 1            | -                | -            |
| Dissolved Organic Carbon         | 1610        | U       | 4.8         | < 50        | 500          | 800              | 1000         |

| Solid Information           |       |
|-----------------------------|-------|
| Dry mass of test portion/kg | 0.090 |
| Moisture (%)                | 14    |

# **Waste Acceptance Criteria**

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

# **Test Methods**

| SOP  | Title                                                      | Parameters included                                                                                                                                                                        | Method summary                                                                                                                                                                         |
|------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1010 | pH Value of Waters                                         | pH                                                                                                                                                                                         | pH Meter                                                                                                                                                                               |
| 1020 | Electrical Conductivity and                                | Electrical Conductivity and Total Dissolved Solids (TDS) in Waters                                                                                                                         | Conductivity Meter                                                                                                                                                                     |
| 1220 | Anions, Alkalinity & Ammonium in Waters                    | Fluoride; Chloride; Nitrite; Nitrate; Total;<br>Oxidisable Nitrogen (TON); Sulfate; Phosphate;<br>Alkalinity; Ammonium                                                                     | Automated colorimetric analysis using<br>'Aquakem 600' Discrete Analyser.                                                                                                              |
| 1450 | Metals in Waters by ICP-MS                                 | Metals, including: Antimony; Arsenic; Barium;<br>Beryllium; Boron; Cadmium; Chromium; Cobalt;<br>Copper; Lead; Manganese; Mercury;<br>Molybdenum; Nickel; Selenium; Tin; Vanadium;<br>Zinc | Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).                                                                       |
| 1610 | Total/Dissolved Organic Carbon in Waters                   | Organic Carbon                                                                                                                                                                             | TOC Analyser using Catalytic Oxidation                                                                                                                                                 |
| 1920 | Phenols in Waters by HPLC                                  | Phenolic compounds including: Phenol,<br>Cresols, Xylenols, Trimethylphenols Note:<br>Chlorophenols are excluded.                                                                          | Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.                                                                                        |
| 2010 | pH Value of Soils                                          | pH                                                                                                                                                                                         | pH Meter                                                                                                                                                                               |
| 2015 | Acid Neutralisation Capacity                               | Acid Reserve                                                                                                                                                                               | Titration                                                                                                                                                                              |
| 2030 | Moisture and Stone Content of Soils(Requirement of MCERTS) | Moisture content                                                                                                                                                                           | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                                                                   |
| 2040 | Soil Description(Requirement of MCERTS)                    | Soil description                                                                                                                                                                           | As received soil is described based upon BS5930                                                                                                                                        |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium     | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                       | Aqueous extraction / ICP-OES                                                                                                                                                           |
| 2180 | Sulphur (Elemental) in Soils by HPLC                       | Sulphur                                                                                                                                                                                    | Dichloromethane extraction / HPLC with UV detection                                                                                                                                    |
| 2192 | Asbestos                                                   | Asbestos                                                                                                                                                                                   | Polarised light microscopy / Gravimetry                                                                                                                                                |
| 2300 | Cyanides & Thiocyanate in Soils                            | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                         | Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.                                                                                   |
| 2325 | Sulphide in Soils                                          | Sulphide                                                                                                                                                                                   | Steam distillation with sulphuric acid / analysis<br>by 'Aquakem 600' Discrete Analyser, using<br>N,N–dimethyl-p-phenylenediamine.                                                     |
| 2430 | Total Sulphate in soils                                    | Total Sulphate                                                                                                                                                                             | Acid digestion followed by determination of sulphate in extract by ICP-OES.                                                                                                            |
| 2450 | Acid Soluble Metals in Soils                               | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                          | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                               |
| 2490 | Hexavalent Chromium in Soils                               | Chromium [VI]                                                                                                                                                                              | Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. |
| 2610 | Loss on Ignition                                           | loss on ignition (LOI)                                                                                                                                                                     | Determination of the proportion by mass that is lost from a soil by ignition at 550°C.                                                                                                 |
| 2625 | Total Organic Carbon in Soils                              | Total organic Carbon (TOC)                                                                                                                                                                 | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2670 | Total Petroleum Hydrocarbons<br>(TPH) in Soils by GC-FID   | TPH (C6–C40); optional carbon banding, e.g. 3-<br>band – GRO, DRO & LRO*TPH C8–C40                                                                                                         | Dichloromethane extraction / GC-FID                                                                                                                                                    |
| 2680 | TPH A/A Split                                              | Aliphatics: >C5-C6, >C6-C8,>C8-C10,<br>>C10-C12, >C12-C16, >C16-C21, >C21-<br>C35, >C35- C44Aromatics: >C5-C7, >C7-C8,<br>>C8-C10, >C10-C12, >C12-C16, >C16-C21,<br>>C21-C35, >C35-C44     | Dichloromethane extraction / GCxGC FID detection                                                                                                                                       |

# **Test Methods**

| SOP  | Title                                                                    | Parameters included                                                                                                                                                                                                                                                       | Method summary                                                                                                                                             |
|------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2760 | Volatile Organic Compounds<br>(VOCs) in Soils by Headspace<br>GC-MS      | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule                                                                                                                                      | Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds. |
| 2800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-MS | Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene* | Dichloromethane extraction / GC-MS                                                                                                                         |
| 2815 | Polychlorinated Biphenyls<br>(PCB) ICES7Congeners in<br>Soils by GC-MS   | ICES7 PCB congeners                                                                                                                                                                                                                                                       | Acetone/Hexane extraction / GC-MS                                                                                                                          |
| 2920 | Phenols in Soils by HPLC                                                 | Phenolic compounds including Resorcinol,<br>Phenol, Methylphenols, Dimethylphenols, 1-<br>Naphthol and TrimethylphenolsNote:<br>chlorophenols are excluded.                                                                                                               | 60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.                                                   |
| 640  | Characterisation of Waste (Leaching C10)                                 | Waste material including soil, sludges and granular waste                                                                                                                                                                                                                 | ComplianceTest for Leaching of Granular Waste Material and Sludge                                                                                          |

### **Report Information**

# U UKAS accredited M MCERTS and UKAS accredited N Unaccredited

- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

#### **Sample Retention and Disposal**

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>



# eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 20-29269-1

Initial Date of Issue: 03-Nov-2020

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Carin Cornwall

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey

Stephen Franey
Stephen McCracken
Stephen Watson
Stuart Abraham
Thomas McAllis

**Project** 20-0399B Bus Connects Route 6

Quotation No.: Q20-21063 Date Received: 29-Oct-2020

Order No.: Date Instructed: 29-Oct-2020

No. of Samples: 1

Turnaround (Wkdays): 5 Results Due: 04-Nov-2020

Date Approved: 03-Nov-2020

Approved By:

**Details:** Glynn Harvey, Technical Manager



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

| Client: Causeway Geotech Ltd        |         | 20-29269 |          |          |                         |
|-------------------------------------|---------|----------|----------|----------|-------------------------|
| Quotation No.: Q20-21063            |         | Chemte   | st Sam   | ple ID.: | 1088344                 |
|                                     |         | Sa       | ample Lo | cation:  | R6-CP09                 |
|                                     |         | е Туре:  | SOIL     |          |                         |
|                                     |         |          | Top Dep  | oth (m): | 1.00                    |
|                                     |         |          | Date Sa  | impled:  | 23-Oct-2020             |
|                                     |         |          | Asbest   | os Lab:  | COVENTRY                |
| Determinand                         | Accred. | SOP      | Units    | LOD      |                         |
| ACM Type                            | U       | 2192     |          | N/A      | -                       |
| Asbestos Identification             | U       | 2192     |          | N/A      | No Asbestos<br>Detected |
| ACM Detection Stage                 | U       | 2192     |          | N/A      | -                       |
| Moisture                            | N       | 2030     | %        | 0.020    | 9.6                     |
| pH                                  | U       | 2010     |          | 4.0      | 8.6                     |
| Boron (Hot Water Soluble)           | U       | 2120     | mg/kg    | 0.40     | < 0.40                  |
| Sulphate (2:1 Water Soluble) as SO4 | U       | 2120     | g/l      | 0.010    | < 0.010                 |
| Cyanide (Total)                     | U       | 2300     | mg/kg    | 0.50     | < 0.50                  |
| Arsenic                             | U       | 2450     | mg/kg    | 1.0      | 20                      |
| Cadmium                             | U       | 2450     | mg/kg    | 0.10     | 1.4                     |
| Chromium                            | U       | 2450     | mg/kg    | 1.0      | 13                      |
| Copper                              | U       | 2450     | mg/kg    | 0.50     | 23                      |
| Mercury                             | U       | 2450     | mg/kg    | 0.10     | < 0.10                  |
| Nickel                              | U       | 2450     | mg/kg    | 0.50     | 32                      |
| Lead                                | U       | 2450     | mg/kg    | 0.50     | 27                      |
| Zinc                                | U       | 2450     | mg/kg    | 0.50     | 56                      |
| Organic Matter                      | U       | 2625     | %        | 0.40     | 2.2                     |
| Total TPH >C6-C40                   | U       | 2670     | mg/kg    | 10       | < 10                    |
| Naphthalene                         | U       | 2700     | mg/kg    | 0.10     | < 0.10                  |
| Acenaphthylene                      | U       | 2700     | mg/kg    | 0.10     | < 0.10                  |
| Acenaphthene                        | U       | 2700     | mg/kg    | 0.10     | < 0.10                  |
| Fluorene                            | U       | 2700     | mg/kg    | 0.10     | < 0.10                  |
| Phenanthrene                        | U       | 2700     | mg/kg    | 0.10     | 0.66                    |
| Anthracene                          | U       | 2700     | mg/kg    | 0.10     | 0.19                    |
| Fluoranthene                        | U       | 2700     | mg/kg    | 0.10     | 1.3                     |
| Pyrene                              | U       | 2700     | )        | 0.10     | 1.4                     |
| Benzo[a]anthracene                  | U       | 2700     | mg/kg    | 0.10     | 0.72                    |
| Chrysene                            | U       | 2700     | 0        | 0.10     | 0.72                    |
| Benzo[b]fluoranthene                | U       | 2700     | mg/kg    | 0.10     | < 0.10                  |
| Benzo[k]fluoranthene                | U       | 2700     | mg/kg    | 0.10     | < 0.10                  |
| Benzo[a]pyrene                      | U       | 2700     | ,        | 0.10     | < 0.10                  |
| Indeno(1,2,3-c,d)Pyrene             | U       | 2700     | )        | 0.10     | < 0.10                  |
| Dibenz(a,h)Anthracene               | U       | 2700     |          | 0.10     | < 0.10                  |
| Benzo[g,h,i]perylene                | U       | 2700     | mg/kg    | 0.10     | < 0.10                  |
| Coronene                            | N       | 2700     | mg/kg    | 0.10     | < 0.10                  |
| Total Of 17 PAH's                   | N       | 2700     | )        | 2.0      | 5.0                     |
| Total Phenols                       | U       | 2920     | mg/kg    | 0.30     | < 0.30                  |

# **Test Methods**

| SOP  | Title                                                                     | Parameters included                                                                                                                                                                                                                                          | Method summary                                                                                                                       |
|------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 2010 | pH Value of Soils                                                         | рН                                                                                                                                                                                                                                                           | pH Meter                                                                                                                             |
| 2030 | Moisture and Stone Content of<br>Soils(Requirement of<br>MCERTS)          | Moisture content                                                                                                                                                                                                                                             | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                 |
| 2040 | Soil Description(Requirement of MCERTS)                                   | Soil description                                                                                                                                                                                                                                             | As received soil is described based upon BS5930                                                                                      |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                    | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                         | Aqueous extraction / ICP-OES                                                                                                         |
| 2192 | Asbestos                                                                  | Asbestos                                                                                                                                                                                                                                                     | Polarised light microscopy / Gravimetry                                                                                              |
| 2300 | Cyanides & Thiocyanate in Soils                                           | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                           | Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.                                 |
| 2450 | Acid Soluble Metals in Soils                                              | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                            | Acid digestion followed by determination of metals in extract by ICP-MS.                                                             |
| 2625 | Total Organic Carbon in Soils                                             | Total organic Carbon (TOC)                                                                                                                                                                                                                                   | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                           |
| 2670 | Total Petroleum Hydrocarbons<br>(TPH) in Soils by GC-FID                  | TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40                                                                                                                                                                               | Dichloromethane extraction / GC-FID                                                                                                  |
| 2700 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-FID | Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene | Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds) |
| 2920 | Phenols in Soils by HPLC                                                  | Phenolic compounds including Resorcinol,<br>Phenol, Methylphenols, Dimethylphenols, 1-<br>Naphthol and TrimethylphenolsNote:<br>chlorophenols are excluded.                                                                                                  | 60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.                             |

### **Report Information**

# Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
  - < "less than"
  - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

#### **Sample Retention and Disposal**

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>



eurofins

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Chemtest

Tel: 01638 606070 Email: info@chemtest.com

# **Final Report**

**Report No.:** 20-29273-1

Initial Date of Issue: 04-Nov-2020

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Carin Cornwall

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey

Stephen McCracken Stephen Watson Stuart Abraham Thomas McAllis

**Project** 20-0399B Bus Connects Route 6

Quotation No.: Q20-21063 Date Received: 29-Oct-2020

Order No.: Date Instructed: 29-Oct-2020

No. of Samples: 1

Turnaround (Wkdays): 5 Results Due: 04-Nov-2020

Date Approved: 04-Nov-2020

Approved By:

**Details:** Glynn Harvey, Technical Manager



Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

| Client: Causeway Geotech Ltd        |         | 20-29273       |          |         |                         |  |
|-------------------------------------|---------|----------------|----------|---------|-------------------------|--|
| Quotation No.: Q20-21063            | (       |                | st Sam   |         | 1088370                 |  |
|                                     |         | Sa             | ocation: | R6-CP10 |                         |  |
|                                     |         | Sample Type    |          |         |                         |  |
|                                     |         | Top Depth (m): |          |         |                         |  |
|                                     |         |                | Date Sa  | ampled: | 24-Oct-2020             |  |
|                                     |         |                | Asbest   | os Lab: | COVENTRY                |  |
| Determinand                         | Accred. | SOP            | Units    | LOD     |                         |  |
| ACM Type                            | U       | 2192           |          | N/A     | -                       |  |
| Asbestos Identification             | U       | 2192           |          | N/A     | No Asbestos<br>Detected |  |
| ACM Detection Stage                 | U       | 2192           |          | N/A     | -                       |  |
| Moisture                            | N       | 2030           | %        | 0.020   | 11                      |  |
| рН                                  | U       | 2010           |          | 4.0     | 8.3                     |  |
| Boron (Hot Water Soluble)           | U       | 2120           | mg/kg    | 0.40    | < 0.40                  |  |
| Sulphate (2:1 Water Soluble) as SO4 | U       | 2120           | g/l      | 0.010   | 0.50                    |  |
| Cyanide (Total)                     | U       | 2300           | )<br>י   | 0.50    | < 0.50                  |  |
| Arsenic                             | U       | 2450           | mg/kg    | 1.0     | 18                      |  |
| Cadmium                             | U       | 2450           | mg/kg    | 0.10    | 1.6                     |  |
| Chromium                            | U       | 2450           | mg/kg    | 1.0     | 16                      |  |
| Copper                              | U       | 2450           | mg/kg    | 0.50    | 24                      |  |
| Mercury                             | U       | 2450           | mg/kg    | 0.10    | < 0.10                  |  |
| Nickel                              | U       | 2450           | mg/kg    | 0.50    | 41                      |  |
| Lead                                | U       | 2450           | mg/kg    | 0.50    | 27                      |  |
| Zinc                                | U       | 2450           | mg/kg    | 0.50    | 79                      |  |
| Organic Matter                      | U       | 2625           | %        | 0.40    | 1.9                     |  |
| Total TPH >C6-C40                   | U       | 2670           | 0 0      | 10      | 230                     |  |
| Naphthalene                         | U       | 2700           | 0 0      | 0.10    | 9.2                     |  |
| Acenaphthylene                      | U       | 2700           | 0        | 0.10    | 0.57                    |  |
| Acenaphthene                        | U       |                | mg/kg    |         | 5.7                     |  |
| Fluorene                            | U       | 2700           | mg/kg    |         | 4.8                     |  |
| Phenanthrene                        | U       | 2700           |          | 0.10    | 18                      |  |
| Anthracene                          | U       | 2700           | mg/kg    | 0.10    | 3.1                     |  |
| Fluoranthene                        | U       | 2700           | mg/kg    | 0.10    | 11                      |  |
| Pyrene                              | U       |                | mg/kg    |         | 10                      |  |
| Benzo[a]anthracene                  | U       | 2700           | mg/kg    |         | 4.5                     |  |
| Chrysene                            | U       | 2700           | 0        | 0.10    | 4.7                     |  |
| Benzo[b]fluoranthene                | U       | 2700           | 0        | 0.10    | 4.8                     |  |
| Benzo[k]fluoranthene                | U       | 2700           | 5        | 0.10    | 2.0                     |  |
| Benzo[a]pyrene                      | U       |                | mg/kg    |         | 4.0                     |  |
| Indeno(1,2,3-c,d)Pyrene             | U       |                | mg/kg    |         | 2.1                     |  |
| Dibenz(a,h)Anthracene               | U       |                | mg/kg    |         | 0.98                    |  |
| Benzo[g,h,i]perylene                | U       | 2700           | 0 0      | 0.10    | 2.2                     |  |
| Coronene                            | N       | 2700           | 0        | 0.10    | < 0.10                  |  |
| Total Of 17 PAH's                   | N       |                | mg/kg    |         | 88                      |  |
| Total Phenols                       | U       | 2920           | mg/kg    | 0.30    | < 0.30                  |  |

# **Test Methods**

| SOP  | Title                                                                     | Parameters included                                                                                                                                                                                                                                          | Method summary                                                                                                                       |
|------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 2010 | pH Value of Soils                                                         | рН                                                                                                                                                                                                                                                           | pH Meter                                                                                                                             |
| 2030 | Moisture and Stone Content of<br>Soils(Requirement of<br>MCERTS)          | Moisture content                                                                                                                                                                                                                                             | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                 |
| 2040 | Soil Description(Requirement of MCERTS)                                   | Soil description                                                                                                                                                                                                                                             | As received soil is described based upon BS5930                                                                                      |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                    | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                         | Aqueous extraction / ICP-OES                                                                                                         |
| 2192 | Asbestos                                                                  | Asbestos                                                                                                                                                                                                                                                     | Polarised light microscopy / Gravimetry                                                                                              |
| 2300 | Cyanides & Thiocyanate in Soils                                           | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                           | Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.                                 |
| 2450 | Acid Soluble Metals in Soils                                              | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                            | Acid digestion followed by determination of metals in extract by ICP-MS.                                                             |
| 2625 | Total Organic Carbon in Soils                                             | Total organic Carbon (TOC)                                                                                                                                                                                                                                   | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                           |
| 2670 | Total Petroleum Hydrocarbons<br>(TPH) in Soils by GC-FID                  | TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40                                                                                                                                                                               | Dichloromethane extraction / GC-FID                                                                                                  |
| 2700 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-FID | Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene | Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds) |
| 2920 | Phenols in Soils by HPLC                                                  | Phenolic compounds including Resorcinol,<br>Phenol, Methylphenols, Dimethylphenols, 1-<br>Naphthol and TrimethylphenolsNote:<br>chlorophenols are excluded.                                                                                                  | 60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.                             |

### **Report Information**

# Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
  - < "less than"
  - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

#### **Sample Retention and Disposal**

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>



# APPENDIX H SPT HAMMER ENERGY MEASUREMENT REPORT





# **SPT Hammer Energy Test Report**

in accordance with BSEN ISO 22476-3:2005

Southern Testing Keeble House Stuart Way East Grinstead West Sussex SPT Hammer Ref: .0643

Test Date:

22/02/2020

Report Date:

03/03/2020

File Name:

.0643.spt

Test Operator:

NPB

#### **Instrumented Rod Data**

Diameter d<sub>r</sub> (mm):

**RH19 4QA** 

54

Wall Thickness  $t_r$  (mm):

6.0

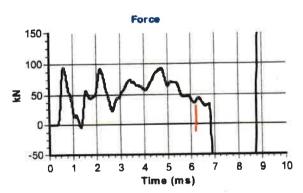
Assumed Modulus Ea (GPa): 200

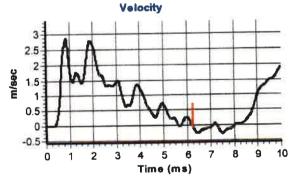
Falling Height h (mm): 760

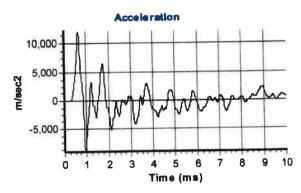
SPT String Length L (m): 10.0

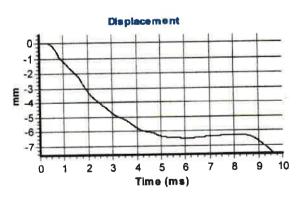
**SPT Hammer Information** 

Hammer Mass m (kg): 63.5


Accelerometer No.1: Accelerometer No.2:


6458


9607


**Comments / Location** 

**BALLEYMONEY** 









#### **Calculations**

Area of Rod A (mm2):

905

Theoretical Energy  $E_{theor}$  (J):

473

Measured Energy  $E_{meas}$  (J):

400

Energy Ratio E, (%):

85

Signed: Neil Burrows

Title:

Field Operations Manager

The recommended calibration interval is 12 months



# **SPT Hammer Energy Test Report**

in accordance with BSEN ISO 22476-3:2005

**Southern Testing Keeble House Stuart Way East Grinstead** West Sussex

**RH19 4QA** 

SPT Hammer Ref: .17

Test Date:

22/02/2020

Report Date:

03/03/2020

File Name:

.T7.spt

Test Operator:

**NPB** 

### **Instrumented Rod Data**

Diameter d<sub>r</sub> (mm):

54

Wall Thickness t<sub>r</sub> (mm):

6.0

Assumed Modulus Ea (GPa): 200

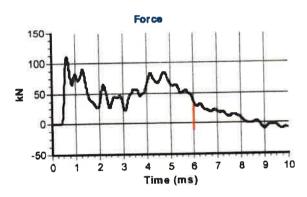
Accelerometer No.1:

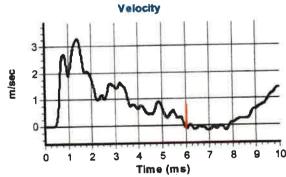
6458

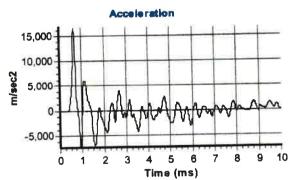
Accelerometer No.2:

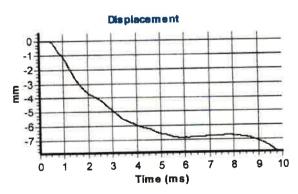
9607

### **SPT Hammer Information**


Hammer Mass m (kg):


Falling Height h (mm): 760


SPT String Length L (m): 10.0


#### **Comments / Location**

**BALLEYMONEY** 









#### **Calculations**

Area of Rod A (mm2):

905

Theoretical Energy Etheor (J):

473

Measured Energy E<sub>meas</sub> (J):

399

Energy Ratio  $E_r$  (%):

84

Signed: **Neil Burrows** 

Title:

Field Operations Manager

The recommended calibration interval is 12 months